		Re	g. No.									
	Question Paper	Code	1	1244	4							
	M.B.A - DEGREE EXA	AMINA	TION	S. N	OV	/ DI	EC	2023				
		irst Sen		-)								
	Master of Bu	siness	Admini	stra	tion							
	20MBT104 - BUSINESS STATIS	FICS A	ND AN	IAL	YTI	CS	FO	R DI	ECI	SIO	N	
	r	MAKIN	IG									
	(Statistical 7	Table to	be perr	nitte	ed)							
	(Reg	ulations	s 2020)									
Dur	ation: 3 Hours							Max	x. M	lark	s: 10)0
	PART - A	-			s)							
	Answer	r ALL (Question	ns							Mari	ka
1.	State Baye's theorem											el, CO
2.	Define the Probability mass function	on of bi	nomial	dist	ributi	ion.				Ì	2,K1,C	201
3.	Write the applications of central lin									Ì	2,K2,C	CO2
4.	Aautomobile repair shop has take the average service time on an auto	n a ran	dom sa	-							2,K1,0	CO2
	deviation of 26 minutes. Compute	the star	dard er	ror o	of the	e me	ean.					
5.	What are the uses of F test?										2,K1,C	
6.	What is the aim of design of Exper	riment?									2,K1,C	
7.	List out some advantages of non-pa	arametr	ic test.							-	2,K1,C	CO4
8.	Write the difference between U tes	t and H	test.							-	2,K1,C	204
9.	Explain the uses of time series.									-	2,K2,C	205
10.	Distinguish between correlation an	d Regre	ession.							2	2,K2,C	CO5
	PART - B Answer	·			s)							
11.	a) The contents of urns I, II and I 1 white 2 black and 3 red ball		s follow	vs:						1	16,K3,	C01

1 white, 2 black and 3 red balls
1 white, 1 black and 1 red balls
4 white, 5 black and 3 red balls.
One urn is chosen at random and two balls drawn. They happen to be white and red. Compute the probability that they come from urns I, II and III.

OR

b) In a certain factory manufacturing razor blades, there is a small ^{16,K3,CO1} change of 1/500 for any blade to be defective. The blades are

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create 12444

supplied in packets of 10. Use Poisson distribution to calculate the approximate number of packets containing

(1) No defective

(2) One defective

(3) Two defective blade

Respectively in a consignment of 10,000 packets.

12. a) A random sample of size 100 is taken from a population whose mean 16,K3,CO2 is 60 and variance 400. Using central limit theorem, compute the probability that we can assert that the mean of the sample will not differ from μ more than 4.

OR

b) Two independent samples are chosen from two schools A and B and ^{16,K3,CO2} a common test is given in statistics subject. The scores of the students are given below. Construct 95% confidence interval for the difference between the average scores of the schools,

16.K3.CO3

School A	76	68	70	43	94	68	33	-
School B	40	48	92	85	70	76	68	22

13. a) Two random samples gave the following results:

Sample	Size	Sample Mean	Sum of squares of deviations from the mean
1	10	15	90
2	12	14	108

Determine whether the samples come from the same normal population at 5 % level of significance.

OR

b) A company appoints 4 salesman A, B,C and D and observes their ^{16,K3,CO3} sales in 3 seasons: Summer, winter and monsoon. The figures(in lakhs of Rs.) are the given in the following table:

Season/ Salesman	А	В	С	D
Summer	45	40	38	37
Winter	43	41	45	38
Monsoon	39	39	41	41

Carry out an analysis of variance.

14. a) Two researchers A and B adopted different techniques while rating ^{16,K3,CO4} the student's level. Determine whether the techniques adopted by the 2 researchers are independent.

Researchers	Below average	Average	Above Average	Genius	Total				
A	40	33	25	2	100				
В	86	60	44	10	200				
Total	126	93	69	12	300				
OR									

b) Use Kruskal-Wallis test to test for differences in mean among the 16,K3,CO4 three samples.

Sample I	95	97	99	98	99	99	99	94	95	98
Sample II	104	102	102	105	99	102	111	103	100	103
Sample III	119	130	132	136	141	172	145	150	144	135

a) Calculate the correlation coefficient from the following data. 15.

15 Х 10 12 20 23 Y 17 23 25 14 21 OR

b) Compute the regression lines Y on X and X on Y for the data.

Х	1	4	2	3	5
Y	3	1	2	5	4

16,K3,CO5

16,K3,CO5