				-	
	Reg. No.				
	Question Paper Code 13307				
	MBA - DEGREE EXAMINATIONS, NOV / DEC 2024				
	Second Semester				
	Master of Business Administration				
	20MBT205 - BUSINESS OPTIMIZATION TECHNIQUES				
	Regulations - 2020				
	(Use of Graphs is permitted)				
Du	ration: 3 Hours Max.	Ma	rks: 1()0	
	PART - A (10 × 2 = 20 Marks) Answer ALL Questions Marks $\frac{K}{Level}$ CO				
1.	What are the Slack and Surplus variables?	2	KI C	201	
2.	Write the dual of the following primal problem: Maximize $Z = 4x_1 + 5x_2$	2	KI C	201	
	Subject to,				
	$5x_1 + 2x_2 \le 20,$				
	$7x_1 + 6x_2 \le 30$ and $x_1 \ge 0$				
$x_1 \ge 0, x_2 \ge 0.$ 3. What is unbalanced transportation problem?				202	
4.	4. Distinguish: Travelling salesman problem and assignment problem.				
5.	5. Define the terms: (i) Saddle point (ii) Two person zero sum game.			:03	
6.	6. What is the objective of sequencing problem?			203	
7.	Explain the following terms in inventory management: (i) Holding cost (ii) Shortage cost (iii) Ordering cost	2	KI C	' <i>04</i>	
8.	Calculate the EOQ in units for an item A whose ordering cost is Rs. 5, Unit	2	K2 C	204	
	price is Re. 1, holding cost is 10% of the cost of the item, annual demand is 400 items and shortage cost is not allowed?				
9.	Define Kendal's Notation for representing Queuing models.	2	KI C	:05	
10.	Discuss the various types of replacement problems.	2	KI C	:05	
	PART - B (5 x 13 = 65 Marks)				

Answer ALL Questions 11. a) Solve the following LPP by graphical method Minimize $Z = 20x_1 + 10x_2$ Subject to , $x_1 + 2x_2 \le 40$, $3x_1 + x_2 \ge 30$, $4x_1 + 3x_2 \ge 60$, and $x_1 \ge 0$, $x_2 \ge 0$.

OR

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create

13307

- b) Solve the following LPP by Simplex method Maximize $Z = 2x_1 + 5x_2$ Subject to, $x_1 + 4x_2 \le 24$, $3x_1 + x_2 \le 21$, $x_1 + x_2 \le 9$, and $x_1 \ge 0$, $x_2 \ge 0$.
- 12. a) Five wagons are available at stations 1, 2, 3, 4 and 5. These are required ¹³ K³ CO² at five stations *I*, *II*, *III*, *IV* and *V*. The mileages between various stations are given by the table below. How should the wagons be transported so as to minimize the total mileage covered?

	Machines				
	Ι	Π	III	IV	V
1	(10	5	9	18	11)
2	13	9	6	12	14
Stations 3	3	2	4	4	5
4	18	9	12	17	15
5	11	6	14	19	10)
		OR			

b) In the modification of a plant layout of a factory four new machines M_1 , ¹³ K³ CO2 M_2 , M_3 and M_4 are to be installed in a machine shop. There are five vacant places A, B, C, D and E available. Because of limited space, machine M_2 cannot be placed at C and M_3 cannot be placed at A. The cost of locating a machine at a place (in hundreds of rupees) is as follows.

		Location				
		А	В	С	D	E
	M_1	32	38	40	28	40
Machine	M_2	40	24	28	21	36
	M ₃	41	27	33	30	37
	M_4	22	38	41	36	36

How should the job be assigned to machines so that the total cost is minimized?

13. a) Solve the following game by graphical method.

13 K3 CO3

13 K3 CO3

b) Find Solution of game theory problem using dominance method.

Player A\Player B	B1	B2	B3	B4
A1	3	5	4	2
A2	5	6	2	4
A3	2	1	4	0
A4	3	3	5	2

- 14. a) Demand for an item in a company is 18,000 units per year. The ¹³ K³ CO⁴ company can produce the items at a rate of 3000 units per month. The cost of one setup is Rs.500 and the holding cost of one unit per month is 15 paise. Shortage cost of one unit is Rs.20 per year.
 - (i) Find the optimum manufacturing quantity.
 - (ii) Find the number of shortages and frequency of production run.

OR

b) Find the optimal order quantity for a product for which the price breaks ¹³ K³ CO⁴ are as follows

Ω_{110}	mtite
Qua	nuuy

Rs.10
s.9.25
Rs.8.75

The monthly demand for the product is 200 units, storage cost is 2% of the unit cost and cost of ordering is Rs.100

15. a) In a super market, the average arrival rate of customer is 10 in every 30 ¹³ K³ CO⁵ minutes following Poisson process. The average time taken by the cashier to list and calculate the customer's purchases is 2.5 minutes, following exponential distribution. What is the probability that the queue length exceeds 6 and what is the expected time spent by a customer in the system?

OR

b) The following failure rates have been observed for certain items.

		1 0 0 0 0 1 1			
End of month	1	2	3	4	5
Probability of failure	0.10	0.30	0.55	0.85	1.00

The cost of replacing an individual item is Rs 1.25. The decision is made to replace all items simultaneously at fixed intervals and also replace individual items as they fail. If the cost of group replacement is 50 paise, what is the best interval for group replacement? At what group replacement per item, would a policy of strictly individual replacement become preferable to the adopted policy.

13 K3 CO5

13307

PART - C $(1 \times 15 = 15 \text{ Marks})$ (Compulsory)

16. A machine operator has to perform two operations, turning and ¹⁵ K3 CO3 threading on a number of different jobs. The time required to perform these operations (in minutes) for each job is known. Determine the order in which the jobs should be processed in order to minimize the total time required to turn out all the jobs.

Job	Time for Turning (minutes)	Time for threading (minutes)
1	3	8
2	12	10
3	5	9
4	2	6
5	9	3
6	11	1

Also find the total processing time and idle times for turning and threading operations.