	Reg. No.	
	Question Paper Code12477	
	B.E. / B.Tech DEGREE EXAMINATIONS, NOV / DEC 2023	
	Fifth Semester	
	Mechanical Engineering	
	20MEEL510 - NON TRADITIONAL MACHINING TECHNIQUES (Regulations 2020)	
Dur	vation: 3 Hours Max. Marl	cs: 100
	PART - A (10 × 2 = 20 Marks) Answer ALL Questions	
1.	Summarize the limitation of traditional machining processes.	Marks, K-Level, CO 2,K2,CO1
2.	What is abrasive Slurry?	2,K1,CO1
3.	Write down the basic requirements of dielectric fluid used in Electric Discharge Machining.	2,K1,CO2
4.	Enumerate the commonly used gas mixture in Plasma Arc Machining.	2,K2,CO2
5.	List the factors that influence oxidation in Electro Chemical Machining.	2,K1,CO3
6.	What are the important functions of abrasive particles used in Electro Chemical Grinding?	2,K1,CO3
7.	What is magneto rheological finishing?	2,K1,CO4
8.	Compare the difference between one way and two ways Abrasive Flow Machining.	2,K2,CO4
9.	Describe the meaning of Stand Off Distance and its effect on machining.	2,K2,CO5
10.	Identify the need of non-traditional machining in industry 4.0.	2,K2,CO6

PART - B $(5 \times 13 = 65 \text{ Marks})$ Answer ALL Questions

11. a) Compare the mechanical and electrical energy processes in terms of ^{13,K2,CO1} physical parameters, shape capabilities, process capability, and process economy.

OR

- b) Explain the process of Abrasive Water Jet Machining and discuss the ^{13,K2,CO1} applications and limitations.
- 12. a) Elaborate the process of Plasma Arc Machining with a neat sketch. ^{13,K2,CO2} Write the advantages, disadvantages and applications.

OR

b) Explain the general arrangement of an electrical discharge machining ^{13,K2,CO2} process and list out its advantages, disadvantages, and applications.

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create 12477

13. a) Explain in detail about the types of maskants used in chemical ^{13,K2,CO3} machining.

OR

- b) Explain the working of electro chemical grinding process with a neat ^{13,K2,CO3} sketch. Also list down its advantages and limitations.
- 14. a) Explain in detail about the process parameters of Abrasive Flow ^{13,K2,CO4} Machining.

OR

- b) Summarize and explain the process parameters of magneto rheological ^{13,K2,CO4} finishing and its applications.
- 15. a) Explain the working principle of Hybrid Machining process with ^{13,K2,CO5} advantages, limitations and application.

OR

b) Explain with neat sketch about working principle of Elastic Emission ^{13,K2,CO5} Machining Process.

PART - C $(1 \times 15 = 15 \text{ Marks})$

16. a) Is it possible to produce spur gears by advanced machining processes, ^{15,K2,CO6} starting with round blank? Conclude.

OR

b) Summarize the needs for development of Non-traditional machining ^{15,K2,CO6} processes? Explain with examples.