		Reg.	No.											
		Question Paper Co	ode	12	2898									
		B.E. / B.Tech DEGREE EXA	MINA	TION	NS, A	PR	IL /	M	AY	202	4			
		Fifth	Semest	er										
		Mechanica	ıl Engi	neerin	g									
		20MEEL514 - PROCESS PLAN	INING	AND	CO	ST E	EST	ΊM	AT	ION	N			
		Regulat	tions - 2	2020										
Du	ration	: 3 Hours							Μ	[ax.	Ma	rks:	100	
PART - A (10 × 2 = 20 Marks) Answer ALL Questions									Marks ^{K–} Level CO					
1.	List t	the various activities of process plant	ning.								2	K1	<i>CO1</i>	
2.	Write	e the output of process planning activ	vity.								2	K1	<i>CO1</i>	
3.	What	t are the main processes parameters i	influen	cing th	ne ma	achir	ning	g pro	oces	s?	2	K1	<i>CO2</i>	
4.	Defin	ne feed rate.									2	K1	<i>CO2</i>	
5.	What	t is prime cost?									2	K1	СО3	
6.	Disti	nguish estimation and costing.									2	K1	СО3	
7.	Estin	nate the direct material cost involved	l in gas	weldi	ng p	roces	ss.				2	K2	CO	
8.	Write	e the material cost in arc welding pro	ocess.								2	K1	<i>CO4</i>	
9.	What	t is machine timing?									2	K1	<i>CO5</i>	
10.	Defin	ne tear down time.									2	K1	CO5	
		PART - B (5 ×	13 = 6	5 Mar	ks)									
11.	a)	Discuss the objectives of process approaches to process planning.	D Ques plann	ing ar	nd ex	kplai	n tl	ne v	vario	ous	13	K2	CO1	
	b)	Discover the understanding of CAP of CAPP.	PP and	explai	n its	type	s ar	nd b	enet	fits	13	K2	CO1	
12.	a)	Classify the main process parameter process with an example.	ers that	can ir	nflue	nce t	the	mao	chini	ng	13	K2	CO2	
	b)	Explain the types of jugs and fu	vturec	with	neat	diad	Tran	n a	nd 1	the	13	K2	CO2	
	0)	clamping effectiveness.	Aluies	with	ncat	ulaş	gran	11 a	.110	line	10	112	002	
13.	a)	Explain in detail on estimation proc	cedure	with e	xamj	ple.					13	K2	CO3	
		0	DR											
Kl	– Reme	ember; K2 – Understand; K3 – Apply; K4 –	- Analyze	e; K5 –	Evalu	ate; I	K6 –	Cre	eate			12	2898	

- b) Extend the understanding in depreciation and discuss the various ¹³ K² CO³ causes and methods of depreciation.
- 14. a) Discuss the estimation of operation cost procedure in forging ¹³ K² CO⁴ operation.

OR

b) Find the selling price of CI pulley as shown in figure. Its surfaces are ¹³ K2 CO4 to be machined after casting. The pattern is supplied by the customer. The pattern which costs Rs. 5000 can produce1000 units before being scraped. The following data can be used:-(i) Density of the material 8g/cc; (ii) Cost of molten metal at cupola spout Rs.30/kg; (iii) Process scrap is 20% of net weight;(iv) Scrap return value Rs. 7/kg; (v) Administrative overheads Rs. 20/hour; (vi) Sales overhead 20% of factory cost; (vii) Profit is 20 % of factory cost.

15. a) Explain the various components and the allowance used in calculating ¹³ K² CO5 the machining time for machining operation.

OR

b) Estimate the machining time taken to prepare a job as shown from M.S ¹³ K² CO⁵ bar of 4 cm in dia. and 7.5 cm long. Take cutting speed of turning and boring operation 20 m/min and drilling operation 30 m/min. Feed of turning and boring operation 0.2 mm/rev, for drilling 0.23 mm/rev. Depth of cut not to exceed 3 mm for any operations.

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create

All dimensions are in mm

12898

PART - C (1 × 15 = 15 Marks)

16. a) A T-Slot is to be cut in a C.I slab shown in Fig. Estimate the ¹⁵ K3 CO6 machining time. Take cutting speed 25 m/min, feed is 0.25 mm/rev. Diameter of cutter for channel milling is 80 mm.

All dimensions are in mm OR

b) Find the time required on a shaper to machine a plate 1100 x 500 mm, ¹⁵ K3 CO6 if the cutting speed is 16 m/min. The ratio of return stroke time to cutting time is 2:3. The clearance at each end is 20 mm along the length and 15 mm on width. Two cuts are required, one roughing cut with cross feed of 2 mm per stroke and one finishing cut with feed of 1.25 mm per stroke.