	Reg. No.			
	Ouestion Paper Code 13229			
	R F / R Tech DECREE FYAMINATIONS NOV / DEC 2024			
	D.E. / D. ICCI DECKEE EXAMINATIONS, NOV / DEC 2024 Seventh Semester			
	Niechanical Engineering			
	20MEEL712 - COMPOSITE MATERIALS AND MECHANICS			
	Regulations - 2020			
Dı	Iration: 3 Hours Max	(. Mar	:ks: 1	.00
	$PART - A (MCQ) (20 \times 1 = 20 Marks)$	Marks	<u>K</u> -	со
1	Answer ALL Questions	1	Level	COL
1.	(a) Class files (b) Calves files (c) Desce files (d) Commission files	1	ΛI	COI
h	(a) Glass fiber (b) Carbon fiber (c) Boron fiber (d) Ceramic fiber	1	K I	COL
Ζ.	(a) Maxima (b) Automative (c) Suggest (d) Suggesting Cools	1	ΚI	COI
2	(a) Marine (b) Automotive (c) Space (d) Sporting Goods	1	K1	COL
5.	(a) Melting and spinning (b) Purelysis and carbonization	1	m	001
	(a) Menting and spinning (b) Fylorysis and carbonization (c) Electroplating (d) Molding			
4	What is the primary advantage of thermonlastic matrix composites?	1	K1	CO2
т.	(a) High-temperature resistance (b) Recyclability			
	(c) Low strength (d) Cost-effectiveness			
5	What process involves injecting resin into a closed mold with dry fibers?	1	K1	<i>CO2</i>
	(a) Pultrusion (b) Spray-up (c) Resin Transfer Molding (d) Filament winding			
6.	What is the main reinforcement in polymer nano composites?	1	K1	<i>CO2</i>
	(a) Carbon fibers (b) Nanometer-scale particles (c) Glass fibers (d) Boron fibers			
7.	What is the primary benefit of titanium-based MMCs?	1	K1	СО3
	(a) Low strength (b) Excellent corrosion resistance			
	(c) High density (d) Poor thermal stability			
8.	What is the primary advantage of magnesium-based MMCs?	1	K1	СО3
	(a) Lightweight (b) High strength (c) Thermal stability (d) High corrosion resistance			
9.	What is the main reinforcement material in metal matrix nanocomposites?	1	Kl	CO3
0	(a) Carbon fibers (b) Nanotubes or nano-oxides (c) Glass fibers (d) Ceramic whiskers	1	1/1	COL
0.	What type of sintering involves a liquid phase to aid densification?	1	KI	<i>CO</i> 4
	(a) Solid-state sintering (b) Liquid phase sintering			
1	(c) Chemical vapor impregnation (d) Hydrothermal synthesis	1	K1	COI
1.	(a) Composites?	1	ΚI	004
r	(a) Ceramic fibers (b) Glass fibers (c) Carbon fibers (d) Metallic whiskers What property is critical for CMCs in high temperature environments?	1	K1	CO4
Ζ.	(a) Low weight (b) Wear resistance (c) Thermal stability (d) Electrical conductivity	1		007
3	What does the 8-matrix in laminated constitutive equations represent?	1	K1	CO5
5.	(a) Extensional stiffness (b) Bending stiffness (c) Coupling stiffness (d) Shear stiffness			
4.	What is the property of quasi-isotropic laminates?	1	K1	CO5
	(a) Isotropic behavior in-plane (b) No coupling between bending and extension			
	(c) High out-of-plane stiffness (d) Zero shear stiffness			
5.	What is the stress resultant per unit width?	1	K1	CO5
	(a) Strain field (b) Force per unit area			
	(c) Force per unit width (d) Moment per unit width			
6.	Which test provides stiffness data for laminates?	1	K1	CO5
	(a) Tension test (b) Laminate bending test (c) Shear test (d) Composite impact test			
7.	What property makes ceramic matrix composites suitable for high-temperature	1	K1	<i>CO6</i>
	environments?			
	(a) Electrical conductivity (b) Thermal insulation			

(a) Electrical conductivity	
(c) High corrosion resistance	(d) Thermal stability

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create

18.	Whi (a) I (c) N	ch composite material is commonly used in aerospace fuselages?Polymer matrix composites(b) Ceramic matrix composites(d) Natural composites	1	K1	<i>CO</i> 6
19.	(c) I Whi (a) I	ich process uses resin impregnation followed by pyrolysis for C-C composites? Hot pressing (b) Liquid impregnation (c) CVI (d) Calendaring	1	K1	<i>CO6</i>
20.	Wha	at is the main advantage of ceramic matrix nanocomposites?	1	K1	<i>CO6</i>
	(a) I	Low cost (b) Enhanced toughness			
	(c) S	Simple fabrication (d) High electrical conductivity			
		PART - B (10 × 2 = 20 Marks) Answer ALL Questions			
21.	Why	y are composite materials needed in the aerospace industry?	2	K1	C01
22.	List	two characteristics of composite materials that make them suitable for military	2	K1	<i>CO1</i>
	appl	lications.			~~~
23.	Defi	ine resin transfer molding in polymer matrix composites.	2	KI	<i>CO2</i>
24.	Stat trad	e the mechanical properties enhanced in polymer matrix composites compared to itional materials.	2	KI	<i>CO2</i>
25.	Brie	fly explain the solid-state processing technique for MMCs.	2	K1	CO3
26.	Defi	ine diffusion bonding in the context of metal matrix composites.	2	K1	CO3
27.	List	four physical methods used in the processing of CMCs.	2	K1	<i>CO</i> 4
28.	Stat	e the mechanical properties of ceramic matrix composites.	2	K1	<i>CO</i> 4
29.	Stat	e the basic assumption of laminated anisotropic plates.	2	K1	<i>CO5</i>
30.	Def	ine quasi-isotropic laminates in mechanics of composites.	2	K1	<i>CO6</i>
		PART - C (6 × 10 = 60 Marks) Answer ALL Questions			
31.	a)	Explain the physical and chemical properties of various plant fibers. OR	10	K2	CO1
	b)	Explain the classification of polymers with suitable industrial applications.	10	K2	<i>CO1</i>
32.	a)	Explain the compression moulding composite fabrication process with appropriate sketches.	10	K2	<i>CO2</i>
	1 \	OR	10	W2	<i>co</i> 2
	b)	Explain the resin transfer moulding process with suitable industrial applications.	10	K2	<i>CO</i> 2
33.	a)	Describe about processing techniques of MMCs with neat sketches.	10	K3	СО3
	b)	Describe various metal matrix Nanocomposites with suitable applications.	10	K3	CO3
34.	a)	Explain about mechanical properties and applications of CMCs.	10	K2	<i>CO</i> 4
	b)	Discuss about processing of carbon-carbon composites and mention their industrial applications.	10	K2	<i>CO4</i>
35.	a)	Describe the evaluation process of lamina properties from laminate tests.	10	K3	CO5
	b)	Derive the expression for lamina constitutive equations.	10	K3	CO5
36.	a)	Explain the carbon fiber reinforcements matrix systems with neat sketches.	10	K2	<i>CO6</i>
	b)	Explain the industrial applications of CMC's with suitable examples.	10	K2	<i>CO6</i>