		Reg. No.											
	Question Paper Code			17									
	B.E. / B.Tech - DEGREE EX		[ON	S, N(OV .	/ DE	C 2	023					
		l Semester	_										
	Mechanica	e	0	-									
	(Common to Mechanical a			C			·/						
	20MEPC302 - ENGINEER			-				(1)					
	(Use of Steam Tables, Mollier an (Regula	tions 2020		c Ch	art 1	s pe	rmit	ted)					
Dur	ation: 3 Hours						Ma	x. M	larks	s: 100			
	PART - A (10 Answer A	• × 2 = 20 M LL Questic		ks)						Mari			
1.	In an open system what kinds of en example.	ergy gets 1	rans	ferre	d? I	Expl	ain	with	an	K-Leve 2,K2,(
							-						
2.	-	ive sign, ex	plai	n?						2,K2,C	CO1		
2. 3.	-	•	-		of ei	nerg	y? E	xpla	iin.	2,K2,C 2,K2,C			
	When do we imply work with a negat	own as high	ner fo	orm (-		-			CO2		
3.	When do we imply work with a negat Work and Heat – Which energy is know What happens to the change in entrop	own as higl by of unive	ner fo	orm (-		-		2,K2,C	CO2 CO2		
3. 4.	When do we imply work with a negat Work and Heat – Which energy is known What happens to the change in entrop around?	own as high by of unive leated?	ner fø rse v	orm o vhen	son	nethi		-		2,K2,C 2,K2,C	CO2 CO2 CO3		
3. 4. 5.	When do we imply work with a negat Work and Heat – Which energy is know What happens to the change in entrop around? When do we call a steam to be superh	own as higl by of unive leated? 1 T–V diagr	ner fø rse v	orm o vhen	son	nethi		-		2,K2,C 2,K2,C 2,K2,C	CO2 CO2 CO3 CO3		
 3. 4. 5. 6. 	When do we imply work with a negat Work and Heat – Which energy is known What happens to the change in entrop around? When do we call a steam to be superh Draw and mark the critical points in a	own as hig by of unive leated? T-V diagr real gas?	ner fo rse v	orm o vhen	son	nethi		-		2,K2,C 2,K2,C 2,K2,C 2,K1,C	CO2 CO2 CO3 CO3 CO4		
 3. 4. 5. 6. 7. 	When do we imply work with a negat Work and Heat – Which energy is known What happens to the change in entrop around? When do we call a steam to be superh Draw and mark the critical points in a When the ideal gas does behave as a r	own as high by of unive leated? T-V diagn real gas? on of state?	ner fo rse v	orm o vhen	son	nethi		-		2,K2,C 2,K2,C 2,K2,C 2,K1,C 2,K2,C	CO2 CO2 CO3 CO3 CO4 CO4		
 3. 4. 5. 6. 7. 8. 	When do we imply work with a negat Work and Heat – Which energy is know What happens to the change in entrop around? When do we call a steam to be superh Draw and mark the critical points in a When the ideal gas does behave as a r What does Clausius Clapeyron equation	own as high by of unive leated? T-V diagn real gas? on of state? mixture?	ner fo rse v	orm o vhen	son	nethi		-		2,K2,C 2,K2,C 2,K2,C 2,K1,C 2,K2,C 2,K2,C	CO2 CO2 CO3 CO3 CO4 CO4 CO5		

PART - B ($5 \times 13 = 65$ Marks)

Answer ALL Questions

11. a) A fluid is filled in a cylinder by a spring loaded piston, so that the ^{13,K3,CO1} pressure in the fluid is linear function of the volume. P=a+bV. The internal energy is given by the following equation U=34+3.15PV, where U is in KJ/Kg. P is in KPa, and V is in m³. If the fluid changes form an initial state of 170KPa, 0.03m³ to a final state of 400KPa, 0.06m³, find the direction of heat flow and work.

OR

b) Air flows steadily at a rate of 0.4 kg/s through an air compressor ^{13,K3,CO1} entering at 6 m/s with a pressure of 1 bar and specific volume of $0.85 \text{m}^3/\text{kg}$ and leaving at 4.5 m/s with a pressure of 6.9 bar and a specific volume of $0.16 \text{m}^3/\text{kg}$. The internal energy of air leaving is 88

kJ/kg greater than that of air entering. Cooling water in the jacket surrounding the cylinder absorbs heat from the air at the rate of 59 kW. Calculate the power required to drive the compressor and the inlet and outlet cross sectional area.

12. a) A reversible heat engine operates between two reservoirs at temperature 13,K3,CO2 of 600⁰C and 40⁰C. The engine drives a reversible refrigerator which operates between reservoirs at a temperature of 40⁰C and -20⁰C. The heat transfer to the engine is 2000kJ and network output of the combined engine refrigerator plant is 360kJ. Find out the heat transfer to the refrigerant and net heat transfer to the reservoir at 40⁰C.

OR

- b) 3 kg of gas (C_v = 0.81 kJ/kg K) initially at 2.5 bar and 400K receives ^{13,K3,CO2} 600KJ of heat from an infinite source at 1200K. If the surrounding temperature is 290K, find the loss in available energy due to above heat transfer.
- 13. a) In a steam turbine steam at 20 bar, 360 °C is expanded to 0.08 bar. It ^{13,K3,CO3} then enters a condenser, where it is condensed to saturated liquid water. The pump feeds back the water into the boiler. Assume ideal process, find per kg of steam, net work and the cycle efficiency.

OR

b) In a single heater regenerative cycle the steam enters the turbine at 30 13,K3,CO3 bar and 400° C and the exhaust pressure is 0.10 bar. The feed water heater is a direct contact type which operates at 5 bar. Find:

- (i) The efficiency and the steam rate of the cycle
- (ii) The increase in mean temperature of heat addition,
- (iii) Efficiency and steam rate as compared to the normal rankine cycle.

14.	a)	Derive all the four Maxwell relations.	13,K2,CO4
-----	----	--	-----------

OR

b) Derive Tds Equations.

- 15. a) A vessel of capacity 3 m³ contains 1kg mol of N₂ at 90⁰C 13,K3,CO5
 - (i) Calculate pressure and the specific volume of the gas
 - (ii) If the ratio of specific heats is 1.4, evaluate the values C_p and C_v
 - (iii) If the gas cools to atmospheric temperature of 20° C
 - (iv) Evaluate the final pressure of gas.
 - (v) Evaluate the increase in specific internal energy,
 - (vi) increase in specific enthalpy
 - (vii) increase in specific entropy and the magnitude and sign of heat transfer.

13.K2.CO4

- b) Air has a dry bulb temperature of 25° C and wet bulb temperature of 13,K3,CO5 15° C. If the barometer reads 1bar, Calculate
 - (i) Vapour pressure
 - (ii) Specific humidity
 - (iii) Saturation ratio
 - (iv) Relative humidity
 - (v) Dew Point Temperature
 - (vi) Vapour Density
 - (vii) Enthalpy of Mixture

PART - C $(1 \times 15 = 15 \text{ Marks})$

16. a) A rankine cycle operates between pressure of 80 bar and 0.1 bar. The 15,K3,CO6 maximum cycle temperature is 600^{0} C. If the steam turbine and condensate pump efficiencies are 0.9 and 0.8 respectively, calculate the specific work and thermal efficiency.

OR

b) A turbine is supplied with steam at a pressure of 32 bar and a 15,K3,CO6 temperature of 410^{0} C. The steam then expands isentropically to a pressure of 0.8 bar. Find the dryness fraction at the end of expansion and thermal efficiency of the cycle.

If the steam is reheated at 5.5 bar to a temperature of 395° C and then expanded isentropically to a pressure of 0.08 bar, what will be the dryness fraction and thermal efficiency of the cycle?