			Reg. No.													
	Question Paper Code				12	12921										
B.E. / B.Tech DEGREE EXAMINATIONS, APRIL / MAY 2024																
Third Semester																
Mechanical Engineering																
(Common to Mechanical and Automation Engineering)																
20MEPC302 - ENGINEERING THERMODYNAMICS																
Regulations - 2020																
(Use of steam table, Mollier chart and Psychrometric chart are permitted)																
Duration: 3 Hours								Max. Marks: 100								
PART - A ($10 \times 2 = 20$ Marks) Answer ALL QuestionsMarks $\frac{K^{-}}{Level}$ C									0							
1.											2	K2	C	21		
2.											2	K1	C	21		
3.	3. What is PMM2?										2	K2	C	02		
4.	4. State the principle of entropy.									2	K2	C	73			
5.										2	K1	-				
6.	5									2	K1	-				
7.	What is meant by equation of state?									2	K2					
8.	1 5									2		C				
9.	9. What is the relative humidity of air if the DPT and DBT are 25°C and 30°C ² ^{K2} at 1 atmospheric pressure?							C	06							
10.	. What is adiabatic evaporative cooling process?									2	K1	C	<i>D6</i>			

PART - B (5 × 13 = 65 Marks)

Answer ALL Questions

11. a) A gas of mass 1.5 kg undergoes a quasistatic expansion, which follows ¹³ K2 CO1 a relationship P = a + bV, where 'a' and 'b' are constants. The initial and final pressures are 1000 kpa and 200kpa respectively and the corresponding volumes are 0.2 m³ and 1.2 m³. The specific internal energy of the gas is given by the relation U = (1.5PV - 85) kJ/kg, where P is in kPa and V is in m³. Calculate the heat transfer and the maximum internal energy of the gas attained during expansion.

OR

- b) Derive the general steady flow energy equation for an open system and ¹³ K2 CO1 deduce the energy equation for (a) a nozzle and (b) evaporator.
- 12. a) A reversible heat engine operates between two reservoirs at ¹³ K³ CO² temperatures of 600° C and 40° C. The engine drives a reversible refrigerator which operates between reservoirs at temperatures of 40° C and -20° C. The heat transfer to the heat engine is 2000kJ and the

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create

network output for the combined engine refrigerator is 360kJ. Calculate the heat transfer to the refrigerant and the net heat transfer to the reservoir at 40° C.

OR

- b) i) State and Prove Clausius inequality.7K2CO2ii) Prove Entropy-A property of the system.6K2CO2
- 13. a) Air expands from 11 bar at 55^oC to a pressure of 3 bar adiabatically. ¹³ K3 CO3 Determine temperature at the end of expansion and work done. Find also the change in entropy.

OR

- b) 1.6 Kg of air compressed according to the law $pV^{1.3} = C$ form pressure ¹³ K³ CO³ of 1.2 bar and temperature of 20⁰C to a pressure of 17.5 bar. Calculate (i) the final volume and temperature (ii) work done (iii) heat transferred and (iv) change in entropy.
- 14. a) Explain the phase transformation that takes place when ice (Solid) is ¹³ K² CO⁴ heated continuously till superheated is obtained. Name the different states involved. Sketch the transformation on a temperature vs heat added diagram.

OR

- b) Consider a steam power plant operating on the ideal Rankine cycle ¹³ K³ CO⁴ Steam enters the turbine at 3 MPa and 623 K and is condensed in the condenser at a pressure of 10 kPa. Determine (i) the thermal efficiency of this power plant.
- 15. a) Write down T-ds relations and derive Maxwell's relation from them. 13 K2 CO5 OR
 - b) Derive Clausius Clapeyron equation. What are the assumptions made 13 K2 CO5 in this equation?

PART - C $(1 \times 15 = 15 \text{ Marks})$

- 16. a) An insulated rigid tank is divided into two compartments by a ¹⁵ K3 CO6 partition. One compartment contains 7kg of oxygen gas at 40°C and 100kpa and the other compartment contains 4kg of nitrogen gas at 20°C and 150kpa. Cv for N₂ = 0.743 kJ/kg K and Cv for O₂ = 0.0658 kJ/kg K. If the partition is removed and the two gases are allowed to mix, determine
 - (1) The mixture temperature and
 - (2) The mixture pressure after equilibrium has been established.

OR

b) The moist air is at 45°C dry bulb temperature and 30°C wet bulb ¹⁵ K3 CO6 temperature. Calculate (i) Vapour pressure, (ii)Dew Point Temperature, (iii) Specific Humidity, (iv) Relative Humidity, (v) Degree of saturation and (vi) Vapour density.

12921