Reg. No.												
----------	--	--	--	--	--	--	--	--	--	--	--	--

Question Paper Code 12512

B.E. / **B.Tech. - DEGREE EXAMINATIONS, NOV / DEC 2023**

Fourth Semester

Mechanical Engineering

20MEPC404 - APPLIED THERMAL SCIENCES

(Use of steam table, Mollier chart and Refrigeration Table are permitted) (Regulations 2020)

Duration: 3 Hours Max. Marks: 100

PART - A $(10 \times 2 = 20 \text{ Marks})$

		Answer ALL Questions				
1.		ntify the various processes involved in Diesel Cycle with P V & T S	Marks, K-Level, CO 2,K2,CO1			
2.	diagram List the assumptions made in deriving Air Standard Cycle efficiency					
3.	Define critical pressure ratio.					
4.	•					
5.	Differentiate centrifugal compressor and rotary blower.					
6.	What do you mean by perfect inter-cooling?					
7.	Define the term Clearance volume.					
8.	List the various components of engine.					
9.	What is dew point temperature?					
10.	Differentiate between heat pump and refrigerator.					
		PART - B (5 × 13 = 65 Marks) Answer ALL Questions				
11.	a)	Develop the Air Standard efficiency for Constant Volume Cycle. OR	13,K2,CO1			
	b)	Find the air standard efficiencies for the Otto and Diesel cycles on the basis of equal compression ratio of 10 and equal heat rejection of 840 kJ/kg. The suction conditions are 1 bar and 328 K.	13,K3,CO1			
12.	a)	Construct an expression for critical pressure ratio in terms of index of expansion.	13,K2,CO2			
	1.	OR	12 1/2 002			
	b)	Air enters a frictionless adiabatic converging nozzle at 10 bar 500 K with negligible velocity. The nozzle discharges to a region at 2 bars. If the exit area of the nozzle is 2.5 cm ² , find the flow rate of air through the nozzle.	13,K3,CO2			

13. a) Explain with a neat sketch of velocity compounding, pressure ^{13,K2,CO3} compounding, pressure-velocity compounding.

OR

- b) A single row impulse turbine develops 135 kW at a blade speed of 170 13,K3,CO3 m/s, using 2.2 kg of steam per sec. Steam leaves the nozzle at 500 m/s. Velocity coefficient of the blades is 0.9. Steam leaves the turbine blades axially. Calculate nozzle angle, blade angles at entry and exit, assuming no shock.
- 14. a) Drive an expression for the work done by single stage single acting 13,K3,CO4 reciprocating air compressor.

OR

b) Explain with short note on

13.K2.CO4

- (i) Reciprocating compressor.
- (ii) Centrifugal compressor.
- (iii) Axial flow compressor.
- 15. a) Explain why cooling is necessary in IC engine with a neat sketch ^{13,K2,CO5} describing the working of water cooling system used for multi cylinder engine.

OR

b) Explain the combustion phenomenon in SI Engines.

13,K2,CO5

PART - C $(1 \times 15 = 15 \text{ Marks})$

16. a) (i) Explain summer Air Conditioning system with a neat layout.

(ii) Sketch various processes of summer Air Conditioning system in a 5,K2,CO6 Psychometric chart.

OR

- b) An office is to be air conditioned for 50 staff when the outdoor ^{15,K3,CO6} conditions are 30°C DBT and 75% RH if the quality of air supplied is 0.4m³/min/person, find the following:
 - (1) capacity of the cooling coil in tones of refrigeration
 - (2) capacity of the heating coil in kW
 - (3) amount of water vapour removed per hour

Assume that required air inlet conditions are 20°C DBT and 60% RH, air is conditioned first by cooling and dehumidifying and then by heating.