Reg. No.								

Question Paper Code 12974

B.E. / B.Tech. - DEGREE EXAMINATIONS, NOV / DEC 2024

Fourth Semester

Mechanical Engineering

20MEPC404 - THERMAL ENGINEERING

Regulations - 2020

(Use of Steam Table and Refrigeration table is permitted)

	(Ose of Steam Table and Refrigeration table is permitted)			
Du	ration: 3 Hours	Iax. Mar	ks: 1	00
	PART - A (MCQ) $(20 \times 1 = 20 \text{ Marks})$		<i>K</i> –	~
	Answer ALL Questions	Marks	Level	co
1.	In an ideal otto cycle, the thermal efficiency is primarily a function of:	1	K2	CO1
	(a) the heat capacity of the working fluid (b) the compression ratio			
	(c) the type of fuel used (d) the speed of the engine			
2.	What is the purpose of the cut-off ratio in the diesel cycle?	1	K2	CO1
	(a) to define the amount of fuel injected			
	(b) to determine the efficiency of the cycle			
	(c) to specify the volume at which heat addition occurs			
	(d) to indicate the maximum temperature reached			
3.	What is the primary characteristic of the brayton cycle?	1	<i>K1</i>	CO1
	(a) constant volume heat addition (b) constant pressure heat addition			
	(c) isothermal expansion (d) isentropic compression			
4.	A nozzle is said to be a convergent nozzle	1	<i>K1</i>	CO2
	(a) when the cross-section of the nozzle increases continuously from the entrance to ex	ıt		
	(b) when the cross-section of the nozzle decreases continuously from the entrance to exi			
	(c) when the cross-section of the nozzle first decreases from the entrance to the throat a	nd		
	then increases from its throat to exit			
	(d) none of these			
5.	The critical pressure ratio for initially superheated steam isas compar	ed 1	<i>K1</i>	CO2
	to initially dry saturated steam.			
	(a) more (b) less (c) same (d) all of these			~~.
6.	A nozzle is said to be a divergent nozzle	1	K1	CO2
	(a) when the cross-section of the nozzle increases continuously from entrance to exit			
	(b) when the cross-section of the nozzle decreases continuously from entrance to exit			
	(c) when the cross-section of the nozzle first decreases from entrance to throat and the	en		
	increases from its throat to exit			
7	(d) none of the given	1	νo	CO2
7.	The impulse reaction turbine has its driving force	1	K2	CO3
	(a) as an impulsive force (b) as a reaction force			
0	(c) partly as an impulsive force and partly as a reaction force (d) none of the mentione	ed <i>1</i>	K1	CO2
8.	Steam turbines are used for	1	ΛI	CO3
	(a) large marine propulsion (b) electric power generation			
0	(c) direct drive of fans, compressors, pumps (d) all of these	1	νn	CO3
9.	The following are the method for compounding except	I	K2	COS
	(a) velocity compounding (b) pressure compounding			
10	(c) volume compounding (d) reaction turbine	1	K1	CO4
10.	The compressed air may be used (b) for exercting programs drills	1	IX.I	CO4
	(a) in gas turbine plants(b) for operating pneumatic drills(c) in starting and supercharging of I.C. engines(d) all of the above			
	(d) all of the above			

11.	The ratio of the discharge pressure to the inlet pressure of air is called (a) compression ratio (b) expansion ratio	1	K2	CO4
12.	(c) compressor efficiency (d) volumetric efficiency Compressor capacity is having the unit (a) cubic meter per kg (b) cubic meter per minute	1	K1	CO4
12	(c) kg per cubic meter (d) meter square per second	1	<i>K1</i>	CO5
13.	Which one is a link between piston and crank? (a) Connecting rod (b) Piston pin (c) Push rod (d) Crankshaft	1	K1	COS
14.	The component that takes care of fluctuation of the cyclic variation in speed is known as	1	K1	CO5
1.5	(a) governor (b) flywheel (c) camshaft (d) fuel pump	1	K2	CO5
15.	The compression ratio for an S.I engine usually lies in the range of (a) 6:1 to 10:1 (b) 11:1 to 20:1 (c) 12:1 to 15:1 (d) 10:1 to 12:1	1	K2	COS
16.	In a two-stroke engine, ports are operated by movement of	1	K1	CO5
17	(a) crank (b) piston (c) connecting rod (d) piston pin	1	K1	CO6
1/.	The coefficient of performance is the ratio of (a) refrigerant effect to the heat of compression	1	K1	C00
	(b) refrigerant effect to the work done by the compressor			
	(c) refrigerant effect to the enthalpy			
10	(d) none of the above	1	К2	CO6
18.	The higher temperature in the vapour compression cycle occurs at (a) expansion valve outlet (b) condenser discharge	1	K2	000
	(c) compressor discharge (d) evaporator outlet			
19.	In the vapour absorption refrigeration system, heat is rejected in	1	K2	CO6
	(a) condenser only (b) generator only			
20	(c) absorber only (d) condenser and absorber The COP of a vapour compression plant in comparison to vapour absorption plant is	1	K2	CO6
20.				
	(a) more (b) less (c) same (d) depends on the size of the plant			
	(a) more (b) less (c) same (d) depends on the size of the plant			
	PART - B $(10 \times 2 = 20 \text{ Marks})$			
21	PART - B ($10 \times 2 = 20 \text{ Marks}$) Answer ALL Questions	2	<i>K</i> 2	CO1
	PART - B ($10 \times 2 = 20$ Marks) Answer ALL Questions Compare Otto and Diesel Cycle.	2 2	K2 K1	CO1
22.	PART - B (10 × 2 = 20 Marks) Answer ALL Questions Compare Otto and Diesel Cycle. Define back work ratio.	2	K1	CO1
22. 23.	PART - B (10 × 2 = 20 Marks) Answer ALL Questions Compare Otto and Diesel Cycle. Define back work ratio. What are the advantages of convergent divergent nozzle?	2 2	K1 K1	CO1 CO2
22.23.24.	PART - B (10 × 2 = 20 Marks) Answer ALL Questions Compare Otto and Diesel Cycle. Define back work ratio. What are the advantages of convergent divergent nozzle? What is metastable flow?	2 2 2	K1 K1 K1	CO1 CO2 CO2
22.23.24.25.	PART - B (10 × 2 = 20 Marks) Answer ALL Questions Compare Otto and Diesel Cycle. Define back work ratio. What are the advantages of convergent divergent nozzle? What is metastable flow? State the principle of impulse turbine.	2 2	K1 K1 K1	CO1 CO2 CO2 CO3
22.23.24.25.26.	PART - B (10 × 2 = 20 Marks) Answer ALL Questions Compare Otto and Diesel Cycle. Define back work ratio. What are the advantages of convergent divergent nozzle? What is metastable flow? State the principle of impulse turbine. What is meant by Pressure Compounding?	2 2 2 2 2	K1 K1 K1 K1	CO1 CO2 CO2 CO3
22.23.24.25.26.27.	PART - B (10 × 2 = 20 Marks) Answer ALL Questions Compare Otto and Diesel Cycle. Define back work ratio. What are the advantages of convergent divergent nozzle? What is metastable flow? State the principle of impulse turbine. What is meant by Pressure Compounding? What do you mean by perfect intercooling?	2 2 2 2 2 2 2	K1 K1 K1 K1 K1	CO1 CO2 CO2 CO3 CO3 CO3
22.23.24.25.26.27.28.	PART - B (10 × 2 = 20 Marks) Answer ALL Questions Compare Otto and Diesel Cycle. Define back work ratio. What are the advantages of convergent divergent nozzle? What is metastable flow? State the principle of impulse turbine. What is meant by Pressure Compounding? What do you mean by perfect intercooling? Differentiate centrifugal compressor and rotary blower.	2 2 2 2 2 2 2 2	K1 K1 K1 K1 K1 K1	CO1 CO2 CO3 CO3 CO4 CO4
22.23.24.25.26.27.28.29.	PART - B (10 × 2 = 20 Marks) Answer ALL Questions Compare Otto and Diesel Cycle. Define back work ratio. What are the advantages of convergent divergent nozzle? What is metastable flow? State the principle of impulse turbine. What is meant by Pressure Compounding? What do you mean by perfect intercooling? Differentiate centrifugal compressor and rotary blower. What do you understand by knocking?	2 2 2 2 2 2 2 2 2 2	K1 K1 K1 K1 K1 K1 K2	CO1 CO2 CO3 CO3 CO4 CO4 CO5
22.23.24.25.26.27.28.29.	PART - B (10 × 2 = 20 Marks) Answer ALL Questions Compare Otto and Diesel Cycle. Define back work ratio. What are the advantages of convergent divergent nozzle? What is metastable flow? State the principle of impulse turbine. What is meant by Pressure Compounding? What do you mean by perfect intercooling? Differentiate centrifugal compressor and rotary blower.	2 2 2 2 2 2 2 2	K1 K1 K1 K1 K1 K1 K2	CO1 CO2 CO3 CO3 CO4 CO4
22.23.24.25.26.27.28.29.	PART - B (10 × 2 = 20 Marks) Answer ALL Questions Compare Otto and Diesel Cycle. Define back work ratio. What are the advantages of convergent divergent nozzle? What is metastable flow? State the principle of impulse turbine. What is meant by Pressure Compounding? What do you mean by perfect intercooling? Differentiate centrifugal compressor and rotary blower. What do you understand by knocking? Name the various components used in simple vapour absorption system.	2 2 2 2 2 2 2 2 2 2	K1 K1 K1 K1 K1 K1 K2	CO1 CO2 CO3 CO3 CO4 CO4 CO5
22.23.24.25.26.27.28.29.	PART - B (10 × 2 = 20 Marks) Answer ALL Questions Compare Otto and Diesel Cycle. Define back work ratio. What are the advantages of convergent divergent nozzle? What is metastable flow? State the principle of impulse turbine. What is meant by Pressure Compounding? What do you mean by perfect intercooling? Differentiate centrifugal compressor and rotary blower. What do you understand by knocking?	2 2 2 2 2 2 2 2 2 2	K1 K1 K1 K1 K1 K1 K2	CO1 CO2 CO3 CO3 CO4 CO4 CO5
22.23.24.25.26.27.28.29.	PART - B (10 × 2 = 20 Marks) Answer ALL Questions Compare Otto and Diesel Cycle. Define back work ratio. What are the advantages of convergent divergent nozzle? What is metastable flow? State the principle of impulse turbine. What is meant by Pressure Compounding? What do you mean by perfect intercooling? Differentiate centrifugal compressor and rotary blower. What do you understand by knocking? Name the various components used in simple vapour absorption system. PART - C (6 × 10 = 60 Marks) Answer ALL Questions a) Find the air standard efficiencies for the Otto and Diesel cycles on the basis of	2 2 2 2 2 2 2 2 2 2 2	K1 K1 K1 K1 K1 K2 K2	CO1 CO2 CO3 CO3 CO4 CO4 CO5
22.23.24.25.26.27.28.29.30.	PART - B (10 × 2 = 20 Marks) Answer ALL Questions Compare Otto and Diesel Cycle. Define back work ratio. What are the advantages of convergent divergent nozzle? What is metastable flow? State the principle of impulse turbine. What is meant by Pressure Compounding? What do you mean by perfect intercooling? Differentiate centrifugal compressor and rotary blower. What do you understand by knocking? Name the various components used in simple vapour absorption system. PART - C (6 × 10 = 60 Marks) Answer ALL Questions a) Find the air standard efficiencies for the Otto and Diesel cycles on the basis of equal compression ratio of 10 and equal heat rejection of 840 kJ/kg. The suction	2 2 2 2 2 2 2 2 2 2 2	K1 K1 K1 K1 K1 K2 K2	CO1 CO2 CO3 CO3 CO4 CO4 CO5
22.23.24.25.26.27.28.29.30.	PART - B (10 × 2 = 20 Marks) Answer ALL Questions Compare Otto and Diesel Cycle. Define back work ratio. What are the advantages of convergent divergent nozzle? What is metastable flow? State the principle of impulse turbine. What is meant by Pressure Compounding? What do you mean by perfect intercooling? Differentiate centrifugal compressor and rotary blower. What do you understand by knocking? Name the various components used in simple vapour absorption system. PART - C (6 × 10 = 60 Marks) Answer ALL Questions a) Find the air standard efficiencies for the Otto and Diesel cycles on the basis of equal compression ratio of 10 and equal heat rejection of 840 kJ/kg. The suction conditions are 1 bar and 328 K.	2 2 2 2 2 2 2 2 2 2 2	K1 K1 K1 K1 K1 K2 K2	CO1 CO2 CO3 CO3 CO4 CO4 CO5
22.23.24.25.26.27.28.29.30.	PART - B (10 × 2 = 20 Marks) Answer ALL Questions Compare Otto and Diesel Cycle. Define back work ratio. What are the advantages of convergent divergent nozzle? What is metastable flow? State the principle of impulse turbine. What is meant by Pressure Compounding? What do you mean by perfect intercooling? Differentiate centrifugal compressor and rotary blower. What do you understand by knocking? Name the various components used in simple vapour absorption system. PART - C (6 × 10 = 60 Marks) Answer ALL Questions a) Find the air standard efficiencies for the Otto and Diesel cycles on the basis of equal compression ratio of 10 and equal heat rejection of 840 kJ/kg. The suction	2 2 2 2 2 2 2 2 2 2 2	K1 K1 K1 K1 K2 K2 K1	CO1 CO2 CO3 CO3 CO4 CO4 CO5

32.	a)	Dry saturated steam enters a frictionless adiabatic nozzle with negligible velocity at a temperature of 300° C. It is expanded to pressure of 550 KPa. The mass flow rate is 0.9 kg/s. Calculate the exit velocity of the steam. OR	10	K2	CO2
	b)	Derive the expression of maximum mass flow rate when steam pass through steam nozzle.	10	K2	CO2
33.	a)	What is meant by compounding of steam turbine? Explain the velocity and pressure compounding in detail.	10	K2	CO3
		OR			
	b)	In De-lavel turbine, the steam enters the wheel through a nozzle with a velocity of 500 m/s and at an angle of 20° to the direction of the motion of the blade. The Blade speed is 200 m/s and the exit angle of the moving blood is 25°. Find the inlet angle of the moving blood exit velocity of steam and its direction and work done per kg of steam.	10	K3	CO3
34.	a)	Drive an expression for the work done by single stage single acting reciprocating air compressor.	10	K2	CO4
		OR			
	b)	A single stage single acting reciprocating air compressor has a bore of 200mm stroke of 250 mm and run at 300 rpm it receives air at 1.1bar and 280°C and delivers it at 9 bar the law of compression is pv ^{1.35} = C. determine the power supplied to compressor and mass of air delivered per minute. Assume η_{vol} =80% η_{mech} =85%.	10	K3	CO4
2.5	`		10	νa	COS
35.	a)	What is the purpose of cooling an I.C. Engine? Explain IC engine cooling systems.	10	K2	CO5
		OR			
	b)	Describe with a suitable sketch two stroke cycle spark ignition engine and how its indicator diagram differs from that of four stroke cycle spark ignition engine.	10	K2	CO5
36.	a)	Explain the construction and working of vapour compression refrigeration system.	10	K2	CO6
		OR			
	b)	Describe the working principle of a centralized air conditioning system and enumerate the need for it.	10	K2	CO6