					Reg.	No.									
		Question Paper Cod					12506								
		B.E. / B. T	ech DEGI	REE EXA	AMIN	IATI	ONS	5, NC	DV .	/ DI	EC 2	023			
				Fourth	Seme	ester									
			Me	echanical	Engi	neeri	ng								
		2	0MEPC404	- THER	MAL	ENC	GINE	EER	IN(J					
	(Use of steam	table, Mollie	er chart ar	nd Re	friger	ation	n Tał	ble	are j	perm	itted)			
-		A XX		(Regulat	tions 2	2020)									
Dur	ation	: 3 Hours			20 14	r 1	`			Maz	x. Ma	rks:	100	
				1 - A (10) nswer AI	x 2 = .L.Ou	20 NI estio	larks	5)							
			11		JL Qu	050101	15						1	Marks,	
1	Ide	ntify the vari	ous processe	es involve	ed in	Diese	-1 C	vele	wif	hР	V &	ътя	K-L	L evel, (K2.CO	2 0 21
1.	dia	gram			cu m	Dies		, CIC	VV 11.	11 1	, ,	C 1 5			
2.	List the assumptions made in deriving Air Standard Cycle efficiency												2,.	K1,CO	1
3.	Define critical pressure ratio.												2,.	K1,CO	2
4.	What is meant by Pressure Compounding?											2,.	K1,CO	3	
5.	Differentiate centrifugal compressor and rotary blower.											2,.	K2,CO	4	
6.	What do you mean by perfect inter-cooling?											2,.	K1,CO	4	
7.	Define the term Clearance volume.										2,.	K1,CO	5		
8.	List the various components of engine.										2,.	K1,CO	5		
9.	What is dew point temperature?										2,.	K1,CO	6		
10.	Differentiate between heat pump and refrigerator.										2,.	K2,CO	6		
			PART A	Γ - Β (5 × nswer AL	13 = LL Qu	65 M estion	l ark s	5)							
11.	a)	Develop the	Air Standard	l efficiend	cy for R	Cons	stant	Volı	ume	e Cy	cle.		13,	.K2,CC)]
	 b) Find the air standard efficiencies for the Otto and Diesel cycles on the basis of equal compression ratio of 10 and equal heat rejection of 840 kJ/kg. The suction conditions are 1 bar and 328 K. 												13,	.K3,CC)]
12.	a)	Construct an expansion.	n expression	for critica	al pre	ssure	ratio	o in 1	tern	ns o	f ind	lex of	: 13,	.K2,CC)2
	b)	Air enters a	frictionless	adiabatic	K conv	ergin	g no	zzle	at	101	bar 5	500 K	13	.K3,CC)2
	-,	with negligi	ble velocity	The nozz	le die	charc	no to		2010	$\frac{1}{2}$	+ 2 h	are If			

with negligible velocity. The nozzle discharges to a region at 2 bars. If the exit area of the nozzle is 2.5 cm^2 , find the flow rate of air through the nozzle.

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create 12506

13. a) Explain with a neat sketch of velocity compounding, pressure ^{13,K2,CO3} compounding, pressure-velocity compounding.

OR

- b) A single row impulse turbine develops 135 kW at a blade speed of 170 ^{13,K3,CO3} m/s, using 2.2 kg of steam per sec. Steam leaves the nozzle at 500 m/s. Velocity coefficient of the blades is 0.9. Steam leaves the turbine blades axially. Calculate nozzle angle, blade angles at entry and exit, assuming no shock.
- 14. a) Drive an expression for the work done by single stage single acting 13,K3,CO4 reciprocating air compressor.

OR

- b) Explain with short note on
 - (i) Reciprocating compressor.
 - (ii) Centrifugal compressor.
 - (iii) Axial flow compressor.
- 15. a) Explain why cooling is necessary in IC engine with a neat sketch ^{13,K2,CO5} describing the working of water cooling system used for multi cylinder engine.

OR

b) Explain the combustion phenomenon in SI Engines. 13,K2,C05

PART - C (1 × 15 = 15 Marks)

16. a) (i) Explain summer Air Conditioning system with a neat layout. 10,K2,CO6

(ii) Sketch various processes of summer Air Conditioning system in a *5,K2,C06* Psychometric chart.

OR

- b) An office is to be air conditioned for 50 staff when the outdoor 15,K3,CO6 conditions are 30°C DBT and 75% RH if the quality of air supplied is $0.4m^3/min/person$, find the following:
 - (1) capacity of the cooling coil in tones of refrigeration
 - (2) capacity of the heating coil in kW
 - (3) amount of water vapour removed per hour

Assume that required air inlet conditions are 20°C DBT and 60% RH, air is conditioned first by cooling and dehumidifying and then by heating.

13,K2,CO4