Question Paper Code13251B.E. / B. Tech DEGREE EXAMINATIONS, NOV / DEC 2024Fifth SemesterMechanical Engineering20MEPC504 - DESIGN OF MACHINE FLEMENTSRegulations - 2020(Use of design data book is permitted)Duration: 3 HoursMax. Marks: 100PART - A (MCQ) (20 × 1 = 20 Marks)Marks $\frac{K}{Level}$ colspan="2">Colspan="2" <th cols<="" th=""><th></th><th></th><th>Reg. No</th><th>•</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th>	<th></th> <th></th> <th>Reg. No</th> <th>•</th> <th></th>			Reg. No	•											
B.E. / B. Tech DEGRE EXAMINATIONS, NOV / DEC 2024 Fifth Semester Mechanical Engineering 20MEPC504 - DESIGN OF MACHINE ELEMENTS Regulations - 2020 (Use of design data book is permitted) Duration: 3 Hours Max. Marks: 100 PART - A (MCQ) (20 × 1 = 20 Marks) Mark $\frac{K}{Lord}$ Answer ALL Questions Mark $\frac{K}{Lord}$ 1. Which design consideration deals with the appearance of the product? I KI (a) Ergonnics (b) Aesthetics (c) System design (d) Creative design 2. Which of the following is not the cause of stress concentration? I KI COI (a) Ergonnics (b) Mild stel (c) alloping stress in a curved beam is I KI COI 3. Which of the following materials has maximum ductility (a) agrey cast iron (b) mild stel (c) alloy steel (d) high carbon steel 3. Which of the toilouing stress in a curved beam is (c) atcoing the materials has a result of which of the following I KI COI (a) agrey cast iron (b) mild steel (c) alloy the consider the controidal axis I KI COI (c) Tacture (d) by -0.57 og (d) $y - 0.4$ og <th></th> <th>Question Paper</th> <th>Code</th> <th></th> <th>13</th> <th>325</th> <th>1</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>		Question Paper	Code		13	325	1									
Fifth SemesterMechanical Engineering 20MEPC504 - DESIGN OF MACHINE FLEMENTS Regulations - 2020 (Use of design data book is permitted)Duration: 3 HoursMax. Marks: 100PART - A (MCQ) ($20 \times 1 = 20$ Marks) Answer ALL QuestionsMarks $\sum_{k=m}^{k}$ Col(a) Ergonomics (b) Aesthetics (c) System design (d) Creative designIKICol(a) Abrupt changes in cross-section (b) Discontinuity in the component (c) Machining scratches (d) Point load applied on the componentIKICol(a) Abrupt changes in cross-section (b) Discontinuity in the component (c) Machining scratches (d) Point load applied on the componentIKICol(a) grey cast iron (b) mild steel (c) alloy steel (d) high carbon steelIKICol4. The bending stress in a curved beam is (a) zero at the neutral axis (b) zero at the outer fiberIKICol5. According to maximum shear stress theory of failure, the relationship between yield strength in shear (τ_2) and tensile yield strength (τ_2) is (a) each of the mentionedIKICol6. A mechanical component may fail as a result of which of the following (a) elastic deflection (a) strength (b) Endurance limit (c) Ultimate tensile strength (d) None of the aboveIKICol7. When using east iron components, which of the following stresses is the main characteristic of failure. (a) Frenzen (b) Fatigue (c) Yielding (d) None of the listedIKICol8. The phenomenon of decreased resistance of the materials to fluctuating stresses i		B.E. / B.Tech DEGREE F	EXAMI	NA	тю	NS	, NO	V /	DE	C 2	2024	4				
Mechanical Engineering 20MEPC504 - DESIGN OF MACHINE ELEMENTS Regulations - 2020 (Use of design data book is permitted)Duration: 3 HoursMarks [100PART - A (MCQ) ($20 \times 1 = 20$ Marks) Answer ALL QuestionsK- COCOOuration: 3 HoursMarks [K- COCOOuration: 6 (b) Aesthetics (a) Ergonomics (b) Aesthetics(c) System design (d) Creative design(JKICO2.Which of the following materials has maximum ductilityIKICOI(a) Abrupt changes in cross-section (b) Discontinuity in the component (c) Machining scratches(d) Point load applied on the componentKICOI(a) Abrupt changes in cross-section (b) mild steel (c) alg rey cast iron (b) mild steel (c) alloy steel(d) high carbon steelKICOI4.The bending stress in a curved beam is (a) zero at the outer fiber(d) zero at the entroidal axis (e) zero at the inner fiber(d) zero at the outer fiberKICOI5.According to maximum shear stress theory of failure, the relationship between yieldIKICOI(a) elastic deflection (b) $\tau_{r} = 0.57 \sigma_{r}$ (d) $\tau_{r} = 0.4 \sigma_{r}$ KICOI(a) elastic deflection (b) $\tau_{r} = 0.57 \sigma_{r}$ (d) None of the aboveKICOI(b) Tendurance limit (c) Ultimate tensile strength (d) None of the aboveKIKICOI(a) Atal Congressive(b) Fatigue (c) Yielding (d) Non		Fifth Semester														
20MEPC504 - DESIGN OF MACHINE ELEMENTS Regulations - 2020 (Use of design data book is permitted) Duration: 3 Hours Marks (1) PART - A (MCQ) ($20 \times 1 = 20$ Marks) Marks ($K = 1 = 20$ Marks) <td></td> <td>Mechani</td> <td>ical Eng</td> <td>ine</td> <td>erin</td> <td>g</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		Mechani	ical Eng	ine	erin	g										
Regulations - 2020 (Use of design data book is permitted)Duration: 3 HoursMax. Marks: 100PART - A (MCQ) ($20 \times 1 = 20$ Marks) Answer ALL QuestionsMarks \sum_{Level}^{K-} $C0$ (a) Ergonomics (b) Aesthetics (c) System design (d) Creative design2. Which of the following is not the cause of stress concentration? I KI $C0I$ (a) Abrupt changes in cross-section (b) Discontinuity in the component I KZ $C0I$ (c) Machining scratches(d) Point load applied on the component KI $C0I$ (a) grey cast iron (b) mild steel(c) alloy steel(d) high carbon steel KI $C0I$ (a) zero at the neutral axis(b) zero at the controidal axis KI $C0I$ (c) zero at the inner fiber(d) zero at the outer fiber KI $C0I$ 5. According to maximum shear stress theory of failure, the relationship between yield I KI $C0I$ (a) $T_{\tau} = 0.5 \sigma_{T}$ (b) $\tau_{\tau} = 0.75 \sigma_{T}$ (d) $\tau_{\tau} = 0.4 \sigma_{T}$ KI $C0I$ (a) alcatic deflection(b) general yielding I KI $C0I$ (a) Viend Strength (b) Endurance limit (c) Ultimate tensile strength (d) None of the above I KI $C0I$ 8. The phenomenon of decreased resistance of the materials to fluctuating stresse is the I KI $C0I$ (a) Yield Strength (b) Endurance limit (c) Ultimate tensile strength (d) None of the labove I KI $C0I$ 9. Shafts are subjected to ing failtre.(c) Shear (d) None of the l		20MEPC504 - DESIGN	N OF M	AC	HIN	ЛE	ELE	ME	NTS	5						
$ (Use of design data book is permitted) $ Duration: 3 Hours Marks 100 $ PART - A (MCQ) (20 \times 1 = 20 Marks) $ Answer ALL Questions Marks $\begin{bmatrix} k_{-1} & c_{02} & c_{-1} & c_{-1$		Regul	lations -	202	20											
Duration: 3 HoursMax. Marks: 100PART - A (MCQ) (20 × 1 = 20 Marks) Answer ALL QuestionsMarks E_{revel} CO (a) Ergonomics(b) Aesthetics(c) System design(d) Creative design2. Which of the following is not the cause of stress concentration? I KI COI (a) Abrupt changes in cross-section(b) Discontinuity in the component I KI COI (a) Abrupt changes in cross-section(b) Discontinuity in the component I KI COI (a) Abrupt changes in cross-section(b) Discontinuity in the component I KI COI (a) agrey cast iron(b) mild stel(c) alloy steel(d) high carbon steel I KI COI 4. The bending stress in a curved beam is (c) zero at the neutral axis(b) zero at the centroidal axis I KI COI 5. According to maximum shear stress theory of failure, the relationship between yield I KI COI 5. According to maximum shear stress theory of bi general yielding (c) zero at the inner fiber I KI COI 6. A mechanical component may fail as a result of which of the following strength are considered to I when using cast iron components, which of the following strength are considered to I KI COI 7(b) Edurance limit (c) Ultimate tensile strength (d) None of the above I KI COI 8. The phenomenon of decreased resistance of the materials to fluctuating stresses is the main characteristic of I failure. I I KI COI </td <td></td> <td>(Use of design</td> <td>data bo</td> <td>ok i</td> <td>s pe</td> <td>rmi</td> <td>tted)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		(Use of design	data bo	ok i	s pe	rmi	tted)									
PART - A (MCQ) (20 × 1 = 20 Marks) Answer ALL QuestionsMarks $K_{}$ COCOa) Ergonomics(b) Aesthetics(c) System design(d) Creative design(d) Co(a) Ergonomics(b) Aesthetics(c) System design(d) Creative design(d) Co(a) Abrupt changes in cross-section(b) Discontinuity in the component(c) Machining scratches(d) Point load applied on the component(c) Machining scratches(d) Point load applied on the component(d) agrey cast iron(b) mild steel(c) alloy steel(d) high carbon steel4. The bending stress in a curved beam is (c) zero at the neutral axis(b) zero at the centroidal axis(c)(c)(c) zero at the inner fiber(d) zero at the centroidal axis(c)(c)(c) zero at the inner fiber(d) $x_y = 0.75 \sigma_y$ (d) $x_y = 0.4 \sigma_y$ (d)5. According to maximum shear stress theory of failure, the relationship between yieldIKICOI(a) $x_y = 0.5 \sigma_y$ (b) $x_y = 0.77 \sigma_y$ (c) $x_y = 0.75 \sigma_y$ (d) $x_y = 0.4 \sigma_y$ (d)6. A mechanical component may fail as a result of which of the followingIKICOI(a) elastic deflection(b) general yielding(c) fractureIKICOI(a) Yield Strength (b) Endurance limit (c) Ultimate tensile strength (d) None of the aboveIKICOI8. The phenomenon of decreased resistance of the materials to fluctuating stresses is the main characteristic of failure.IKICOI(a) Compressive(b) Endiale(c) Shear(d) None o		Duration: 3 Hours								N	Лах	к. М	arks:	100		
Answer ALL QuestionsInterdCol1. Which design consideration deals with the appearance of the product?IKICol(a) Ergonomics(b) Aesthetics(c) System design(d) Creative designIKICol2. Which of the following is not the cause of stress concentration?IKICol(c) Machining scratches(d) Point load applied on the componentIKICol(a) Abrupt changes in cross-section(b) Discontinuity in the componentIKICol(a) grey cast iron(b) mild steel(c) alloy steel(d) high carbon steelIKICol(a) grey cast iron(b) mild steel(c) alloy steel(d) high carbon steelIKICol(a) areo at the neutral axis(b) zero at the centroidal axis(c) zero at the inner fiber(d) zero at the outer fiberS.According to maximum shear stress theory of failure, the relationship between yieldIKICol(a) are $0, 5, 5, 7, 0, 0$ (c) $\tau_y = 0.75 \sigma_y$ (d) $\tau_y = 0.4 \sigma_y$ S.A mechanical component may fail as a result of which of the followingIKICol(a) a leastic deflection(b) general yielding(c) fracture(d) each of the mentionedKICol(a) Yield Strength (b) Endurance limit (c) Ultimate tensile strength (d) None of the aboveIKICol8. The phenomenon of decreased resistance of the materials to fluctuating stresses is the main characteristic of faiture.IKICol(a) Compressive(b) Fatigue(c) Yielding <td></td> <td>PART - A (MCQ)</td> <td>(20 × 1</td> <td>= 2</td> <td>0 M</td> <td>[ar]</td> <td>ks)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Marks</td> <td><i>K</i> –</td> <td>co</td>		PART - A (MCQ)	(20 × 1	= 2	0 M	[ar]	ks)						Marks	<i>K</i> –	co	
1. Which design consideration deals with the appearance of the product?IKICOI(a) Ergonomics(b) Aesthetics(c) System design(d) Creative designIKICOI(a) Abrupt changes in cross-section(b) Discontinuity in the componentIKICOI(a) Abrupt changes in cross-section(b) Discontinuity in the componentIKICOI(a) Abrupt changes in cross-section(b) Discontinuity in the componentIKICOI(a) appear cast iron(b) mild steel(c) alloy steel(d) high carbon steelIKICOI(a) zero at the neutral axis(b) zero at the centroidal axisIKICOI(c) zero at the inner fiber(d) zero at the outer fiberS. According to maximum shear stress theory of failure, the relationship between yieldIKICOI(a) $x_y = 0.5 \sigma_y$ (b) $\tau_y = 0.57 \sigma_y$ (c) $\tau_y = 0.75 \sigma_y$ (d) $\tau_y = 0.4 \sigma_y$ COICOI(a) viel actic deflection(b) general yieldingIKICOI(a) Yield Strength (b) Endurance limit (c) Ultimate tensile strength (d) None of the aboveIKICOI8. The phenomenon of decreased resistance of the materials to fluctuating stresses is the main characteristic of failure.IKICOI(a) Yield Strength (b) Endurance limit (c) Ultimate tensile strength (d) None of the istedIKICOI(a) adameter and length of both shafts is same(d) None of the istedIKICOI(a) Shafts are subjected to (a) Compressive(b) Tensile </td <td></td> <td>Answer AI</td> <td>LL Ques</td> <td>stion</td> <td>18</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td><i>wiurks</i></td> <td>Leve</td> <td>,</td>		Answer AI	LL Ques	stion	18								<i>wiurks</i>	Leve	,	
(a) Ergonomics(b) Aesthetics(c) System design(d) Creative design2. Which of the following is not the cause of stress concentration?// <td>1.</td> <td>Which design consideration deals with the ar</td> <td>ppearan</td> <td>e o</td> <td>f the</td> <td>e pr</td> <td>oduc</td> <td>t?</td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td>Kl</td> <td>COI</td>	1.	Which design consideration deals with the ar	ppearan	e o	f the	e pr	oduc	t?					1	Kl	COI	
2. Which of the following is not the cause of stress concentration: (a) Abrupt changes in cross-section (b) Discontinuity in the component (c) Machining scratches (d) Point load applied on the component (c) Machining scratches (d) Point load applied on the component (c) Machining scratches (d) Point load applied on the component (c) Machining scratches (d) Point load applied on the component (c) Machining scratches (d) Point load applied on the component (c) Machining scratches (d) Point load applied on the component (c) Machining scratches (d) Point load applied on the component (c) Machining scratches (d) Point load applied on the component (c) Machining scratches (d) Point load applied on the component (c) area at the neutral axis (b) zero at the centroidal axis (c) zero at the inner fiber (d) zero at the centroidal axis (c) zero at the inner fiber (d) zero at the cuter fiber 5. According to maximum shear stress theory of failure, the relationship between yield strength in shear (τ_y) and tensile yield strength (σ_y) is (a) $\tau_y = 0.5 \sigma_y$ (b) $\tau_y = 0.577 \sigma_y$ (c) $\tau_y = 0.75 \sigma_y$ (d) $\tau_y = 0.4 \sigma_y$ 6. A mechanical component may fail as a result of which of the following 1 KI CO2 (a) elastic deflection (b) general yielding (c) fracture (d) each of the mentioned 7. When using cast iron components, which of the following strength are considered to be the failure criterion? (a) Yield Strength (b) Endurance limit (c) Ultimate tensile strength (d) None of the above 8. The phenomenon of decreased resistance of the materials to fluctuating stresses is the main characteristic of failure. (a) Compressive (b) Tensile (c) Shear (d) None of the listed 10. The shafts will have same strength on the basis of torsional rigidity, if 1 KI CO3 (a) Axial (b) Radial (c) Eccentric (d) None of the listed 11. Woodruff key permits meroty of the plate (b) Shear failure of rivet (c) Tensile failure of the plate (b) Shear failure of plate 13. What is the requirement to weld a butt joint? (a) The c	า	(a) Ergonomics (b) Aesthetics (c	c) Syster	n de	esigi	n ar 1	(d)	Crea	tive	de	esig	'n	1	K?	CO	
(c) Machining scratches (d) Point load applied on the component (c) Machining scratches (d) Point load applied on the component 3. Which of the following materials has maximum ductility I KI conf (a) grey cast iron (b) mild steel (c) alloy steel (d) high carbon steel 4. The bending stress in a curved beam is I KI conf (a) zero at the neutral axis (b) zero at the centroidal axis (c) zero at the neutral axis (b) zero at the centroidal axis (c) zero at the inner fiber (d) zero at the outer fiber 5. According to maximum shear stress theory of failure, the relationship between yield strength in shear (τ_y) and tensile yield strength (σ_y) is (a) $\tau_y = 0.5 \sigma_y$ (c) $\tau_y = 0.77 \sigma_y$ (d) $\tau_y = 0.4 \sigma_y$ 6. A mechanical component may fail as a result of which of the following I KI conf (c) fracture (d) each of the mentioned 7. When using cast iron components, which of the following strength are considered to be the failure criterion? (a) Yield Strength (b) Endurance limit (c) Ultimate tensile strength (d) None of the above 8. The phenomenon of decreased resistance of the materials to fluctuating stresses is the main characteristic of forces. I KI conf (a) Compressive (b) Tensile (c) Shear (d) None of the above 9. Shafts are subjected to forces. I KI conf (a) diameter and length of both shafts is same (d) all of above conditions are satisfied 11. Woodruff key permits movement between shaft and the hub. I KI conf (a) Axial (b) Radial (c) Eccentric (d) None of the listed 12. Which is not a possible type of failure in a riveted joint? I KI conf (a) Axial (b) Radial (c) Eccentric (d) None of the listed 13. What is the requirement to weld a butt joint? I KI conf (a) Tensing failure of the plate (b) Shear failure of rivet (c) Tensile failure of the plate between rivets (d) Shear failure of plate 13. What is the requirement to weld a butt joint? I KI conf (a) The components must lie in the same plane (b) The components must lie in the same plane (c) Bevelling is not required for components	۷.	(a) Abrupt changes in cross-section (b)) Disco	ntin	nitv	in	the co	omn	onei	nt			1	112	001	
3. Which of the following materials has maximum ductility11 KI COI (a) grey cast iron(b) mild steel(c) alloy steel(d) high carbon steel1 KI COI (a) grey cast iron(b) mild steel(c) alloy steel(d) high carbon steel1 KI COI (a) zero at the neutral axis(b) zero at the cuter fiber1 KI COI 5. According to maximum shear stress theory of failure, the relationship between yield1 KI COI (a) $v_y = 0.5 \sigma_y$ (b) $v_y = 0.577 \sigma_y$ (c) $v_y = 0.75 \sigma_y$ (d) $v_y = 0.4 \sigma_y$ 6 KI COI (a) elastic deflection(b) general yielding(c) fracture(d) each of the mentioned7 KI COI (a) elastic deflection(b) general yielding(c) fracture(d) each of the mentioned7 KI COI (a) Yield Strength (b) Endurance limit (c) Ultimate tensile strength (d) None of the above1 KI COI 8. The phenomenon of decreased resistance of the materials to fluctuating stresses is the main characteristic of		(c) Machining scratches (d) Point	oac	l apr	olie	d on	the c	om	n 201	nent	t				
(a) grey cast iron (b) mild steel (c) alloy steel (d) high carbon steel 4. The bending stress in a curved beam is (a) zero at the neutral axis (b) zero at the cuter foldar axis (c) zero at the inner fiber (d) zero at the cuter fiber 5. According to maximum shear stress theory of failure, the relationship between yield strength in shear (τ_y) and tensile yield strength (σ_y) is (a) $\tau_y = 0.5 \sigma_y$ (b) $\tau_y = 0.577 \sigma_y$ (c) $\tau_y = 0.75 \sigma_y$ (d) $\tau_y = 0.4 \sigma_y$ 6. A mechanical component may fail as a result of which of the following (a) elastic deflection (b) general yielding (c) fracture (d) each of the mentioned 7. When using cast iron components, which of the following strength are considered to be the failure criterion? (a) Yield Strength (b) Endurance limit (c) Ultimate tensile strength (d) None of the above 8. The phenomenon of decreased resistance of the materials to fluctuating stresses is the main characteristic offailure. (a) Fracture (b) Fatigue (c) Yielding (d) None of the listed 10. The shafts will have same strength on the basis of torsional rigidity, if (a) diameter and length of both shafts is same (d) all of above conditions are satisfied 11. Woodruff key permits movement between shaft and the hub. (a) Axial (b) Radial (c) Ecentric (d) None of the listed 12. Which is not a possible type of failure in a riveted joint? (a) Crushing failure of the plate the dist of rivet (c) Tensile failure of the plate towen rivets (d) Shara failure of rivet (c) Tensile failure of the plate between rivets (d) Shara failure of plate 13. What is the requirement to weld a but joint? (a) The components must lie in the same plane (b) The components must lie in the same plane (c) Bevelling is not required for components with a thickness less than 5 mm	3.	Which of the following materials has maxim	um duc	ility	/				J				1	<i>K1</i>	COI	
4. The bending stress in a curved beam is (b) zero at the centroidal axis (c) zero at the neutral axis (d) zero at the cutr fiber (d) zero at the outer fiber 5. According to maximum shear stress theory of failure, the relationship between yield 1 KI CO2 strength in shear (τ_y) and tensile yield strength (σ_y) is (a) $\tau_y = 0.5 \sigma_y$ (b) $\tau_y = 0.577 \sigma_y$ (c) $\tau_y = 0.75 \sigma_y$ (d) $\tau_y = 0.4 \sigma_y$ 6. A mechanical component may fail as a result of which of the following 1 KI CO2 (a) elastic deflection (b) general yielding (c) fracture (d) each of the mentioned 7. When using cast iron components, which of the following strength are considered to be the failure criterion? (a) Yield Strength (b) Endurance limit (c) Ultimate tensile strength (d) None of the above 8. The phenomenon of decreased resistance of the materials to fluctuating stresses is the main characteristic of failure. (a) Fracture (b) Fatigue (c) Yielding (d) None of the labove 9. Shafts are subjected to forces. I KI CO3 (a) Compressive (b) Tensile (c) Shear (d) None of the listed 10. The shafts will have same strength on the basis of torsional rigidity, if I KI CO3 (a) diameter and length of both shafts is same (d) all of above conditions are satisfied 11. Woodruff key permits movement between shaft and the hub. I KI CO3 (a) Crushing failure of the plate (b) Shear failure of rivet (c) Tensile failure of the plate (b) Shear failure of rivet (c) Tensile failure of the plate (b) Shear failure of plate 11. Woodruff key permits		(a) grey cast iron (b) mild steel (c) alloy s	teel	l		(d)	higł	a car	bo	n st	teel				
(a) zero at the neutral axis (b) zero at the centroidal axis (c) zero at the inner fiber (d) zero at the centroidal axis (c) zero at the inner fiber (d) zero at the outer fiber (f) zero at the inner fiber (f) zero at the inner fiber (f) zero at the outer fiber (f) zero at the inner fiber (f) zero at the inner fiber (f) zero at the outer fiber (f) zero at the inner fiber (f) zero at the inner fiber (f) zero at the outer fiber (f) zero at the inner fiber (f) zero at the centroidal axis strength in shear (t_y) and tensile yield strength (f) zero at the outer fiber (f) zero at the centroid laxis (f) zero at the centroid (f) at the following (f) zero at the centroid (f) at the following (f) zero at the centroid (f) at the following (f) zero at the centroid (f) at the following for the plate (f) fores. (f) Yielding (f) None of the listed (f) at the above (f) zero at the centroid (f) at the following at the following at the following (f) at	4.	The bending stress in a curved beam is		_									1	K1	COI	
(c) zero at the inner riber (d) zero at the other riber (d) zero at the other riber (d) zero at the other riber (f) zero at the inner riber (f) and tensile yield strength (σ_y) is (a) $\tau_y = 0.5 \sigma_y$ (b) $\tau_y = 0.57 \sigma_y$ (c) $\tau_y = 0.75 \sigma_y$ (d) $\tau_y = 0.4 \sigma_y$ (e) a tensile zero (f) and tensile yield strength (σ_y) is (a) $\tau_y = 0.5 \sigma_y$ (b) $\tau_y = 0.577 \sigma_y$ (c) $\tau_y = 0.75 \sigma_y$ (d) $\tau_y = 0.4 \sigma_y$ (e) a tensile deflection (b) general yielding (c) fracture (d) each of the mentioned (f) when using cast iron components, which of the following strength are considered to <i>I KI CO2</i> (a) Yield Strength (b) Endurance limit (c) Ultimate tensile strength (d) None of the above (f) Fatigue (c) Yielding (d) None of the above (f) Fatigue (c) Shear (d) None of the listed (f) Fatigue (c) Shear (d) None of the listed (f) Fatigue (c) Shear (d) None of the listed (f) The shafts will have same strength on the basis of torsional rigidity, if <i>I KI CO3</i> (a) Compressive (b) Tensile (c) Shear (d) None of the listed (f) adiameter and length of both shafts is same (d) all of above conditions are satisfied (f) adiameter and length of both shafts is same (d) all of above conditions are satisfied (f) adiameter of the plate (b) Radial (c) Eccentric (d) None of the listed (f) adiameter of the plate (f) Shear failure of rivet (c) Tensile failure of the plate (f) Shear failure of rivet (c) Tensile failure of the plate (f) Shear failure of rivet (f) Tensile (f) Shear failure of rivet (f) Tensile failure of the plate (f) Shear failure of rivet (f) Tensile failure of the plate (f) Shear failure of rivet (f) Tensile failure of rivet (f) Tensile failure of the plate (f) Shear failure of rivet (f) Tensile failure of the plate (f) Shear failure of rivet (f) Tensile failure of the plate between rivets (f) Shear failure of rivet (f) Tensile failure of the plate between rivets (f) Shear failure of rivet (f) Tensile failure of the plate between rivets (f) Shear failure of rivet (f) Tensile failure of the plate between rivets (f) Shear fai		(a) zero at the neutral axis (b)	b) zero a	t th	e ce	ntr	oidal	axis								
3. According to maximum site as stress theory of ranke, the relationship between yield 1 Ki Cost strength in shear (τ_y) and tensile yield strength (σ_y) is (a) $\tau_y = 0.5 \sigma_y$ (b) $\tau_y = 0.57 \sigma_y$ (c) $\tau_y = 0.75 \sigma_y$ (d) $\tau_y = 0.4 \sigma_y$ 6. A mechanical component may fail as a result of which of the following 1 <i>KI</i> Cost (a) elastic deflection (b) general yielding (c) fracture (d) each of the mentioned 7. <i>KI</i> Cost (a) Vield Strength (b) Endurance limit (c) Ultimate tensile strength are considered to 1 <i>KI</i> Cost (a) Yield Strength (b) Endurance limit (c) Ultimate tensile strength (d) None of the above 7. KI Cost 8. The phenomenon of decreased resistance of the materials to fluctuating stresses is the main characteristic of failure. (a) Fracture (b) Fatigue (c) Yielding (d) None of the above 9. Shafts are subjected to forces. 1 <i>KI</i> Cost (a) Compressive (b) Tensile (c) Shear (d) None of the listed 1 <i>KI</i> Cost 10. The shafts will have same strength on the basis of torsional rigidity, if 1 <i>KI</i> Cost (a) aliameter and length of both shafts is same (d) all of above conditions are satisfied 1 <i>KI</i>	5	(c) zero at the inner liber (d)	1) zero a of foilu	t th	e ou bo r	ter	Tiber	in k	otw	0.01		ماط	1	K1	CO	
(a) $\tau_y = 0.5 \sigma_y$ (b) $\tau_y = 0.577 \sigma_y$ (c) $\tau_y = 0.75 \sigma_y$ (d) $\tau_y = 0.4 \sigma_y$ (a) elastic deflection (b) general yielding (c) fracture (d) each of the mentioned (d) each of the mentioned (d) each of the mentioned (e) Yield Strength (b) Endurance limit (c) Ultimate tensile strength are considered to <i>I KI CO2</i> (a) Yield Strength (b) Endurance limit (c) Ultimate tensile strength (d) None of the above (c) Yielding (d) None of the above (c) Shafts are subjected to form forces. <i>I KI CO3</i> (a) Compressive (b) Tensile (c) Shear (d) None of the listed (c) angle of twist for both shafts is same (d) all of above conditions are satisfied (c) angle of twist for both shafts is same (d) all of above conditions are satisfied (c) Tensile (c) Tensile (c) Eccentric (d) None of the listed (c) Tensile (c) Tensile (c) Eccentric (d) None of the listed (c) Tensile (c) Tensile (c) Eccentric (d) None of the listed (c) The shafts will have same strength on the basis of torsional rigidity, if <i>KI CO3</i> (a) Axial (b) Radial (c) Eccentric (d) None of the listed (c) Tensile failure of the plate (b) Shear failure of rivet (c) Tensile failure of the plate (b) Shear failure of rivet (c) Tensile failure of the plate (b) Shear failure of plate (c) Shear failure of plate (c) Tensile failure of the plate (c) Shear failure of plate (c) Have the same plane (b) The components must lie in the same plane (c) Bevelling is not required for components with a thickness less than 5 mm (c) Bref for the plate of the plate with with a thickness less than 5 mm (c) Bref for the plate of the	5.	strength in shear (τ_v) and tensile yield strengt	th (σ_{y}) is	ι, ι δ		Cia	.101151	np t		cci	I yı	ciu				
 6. A mechanical component may fail as a result of which of the following KI CO2 (a) elastic deflection (b) general yielding (c) fracture (d) each of the mentioned 7. When using cast iron components, which of the following strength are considered to KI CO2 (a) Yield Strength (b) Endurance limit (c) Ultimate tensile strength (d) None of the above 8. The phenomenon of decreased resistance of the materials to fluctuating stresses is the KI CO2 (a) Fracture (b) Fatigue (c) Yielding (d) None of the above 9. Shafts are subjected to forces. forces. (a) Compressive (b) Tensile (c) Shear (d) None of the listed 10. The shafts will have same strength on the basis of torsional rigidity, if KI CO3 (a) diameter and length of both shafts is same (c) angle of twist for both shafts is same (d) all of above conditions are satisfied 11. KI CO3 (a) Axial (b) Radial (c) Eccentric (d) None of the listed (c) Tensile failure of the plate (b) Shear failure of rivet (c) Tensile failure of the plate between rivets (d) Shear failure of plate 12. What is the requirement to weld a butt joint? (a) Crushing failure of the plate between rivets (d) Shear failure of plate (a) The components may not necessarily lie in the same plane (c) Bevelling is not required for components with a thickness less than 5 mm 		(a) $\tau_v = 0.5 \sigma_v$ (b) $\tau_v = 0.577 \sigma_v$ (c	$\tau_{\rm v} = 0.$	75 ($\sigma_{\rm v}$		(d)	$\tau_v =$	0.4	$\sigma_{\rm v}$						
(a) elastic deflection (b) general yielding (c) fracture (d) each of the mentioned 7. When using cast iron components, which of the following strength are considered to be the failure criterion? 1 K1 CO2 (a) Yield Strength (b) Endurance limit (c) Ultimate tensile strength (d) None of the above 1 K1 CO2 8. The phenomenon of decreased resistance of the materials to fluctuating stresses is the main characteristic of failure. 1 K1 CO2 (a) Fracture (b) Fatigue (c) Yielding (d) None of the above 1 K1 CO3 9. Shafts are subjected toforces. 1 K1 CO3 (a) Compressive (b) Tensile (c) Shear (d) None of the listed 1 K1 CO3 10. The shafts will have same strength on the basis of torsional rigidity, if 1 K1 CO3 (a) diameter and length of both shafts is same (d) all of above conditions are satisfied 1 K1 CO3 11. Woodruff key permits movement between shaft and the hub. 1 K1 CO4 (a) Axial (b) Radial (c) Eccentric (d) None of the listed 1 K1 CO4 (a) Crushing failure	6.	A mechanical component may fail as a result	t of whi	ch o	f the	e fo	llowi	ing		2			1	K1	CO2	
(c) fracture (d) each of the mentioned 7. When using cast iron components, which of the following strength are considered to be the failure criterion? (a) Yield Strength (b) Endurance limit (c) Ultimate tensile strength (d) None of the above 8. The phenomenon of decreased resistance of the materials to fluctuating stresses is the main characteristic of failure. (a) Fracture (b) Fatigue (c) Yielding (d) None of the above 9. Shafts are subjected to forces. (a) Compressive (b) Tensile (c) Shear (d) None of the listed 10. The shafts will have same strength on the basis of torsional rigidity, if I KI CO3 (a) diameter and length of both shafts is same (d) all of above conditions are satisfied I KI CO3 11. Woodruff key permits movement between shaft and the hub. I KI CO3 (a) Axial (b) Radial (c) Eccentric (d) None of the listed I KI CO4 12. Which is not a possible type of failure in a riveted joint? I KI CO4 (a) The components must lie in the same plane (b) The components may not necessarily lie in the same plane (b) The components may not necessarily lie in the same plane (c) Bevelling is not required for components with a thickness less than 5 mm (c) Bevelling is not required		(a) elastic deflection (b	o) gener	al y	ieldi	ng										
 7. When using cast iron components, which of the following strength are considered to 1 K1 CO2 be the failure criterion? (a) Yield Strength (b) Endurance limit (c) Ultimate tensile strength (d) None of the above 8. The phenomenon of decreased resistance of the materials to fluctuating stresses is the main characteristic of failure. (a) Fracture (b) Fatigue (c) Yielding (d) None of the above 9. Shafts are subjected to forces. 1 K1 CO3 (a) Compressive (b) Tensile (c) Shear (d) None of the listed 10. The shafts will have same strength on the basis of torsional rigidity, if 1 K1 CO3 (a) diameter and length of both shafts is same (b) material of both shafts is same (c) angle of twist for both shafts is same (d) all of above conditions are satisfied 11. Woodruff key permits movement between shaft and the hub. 1 K1 CO3 (a) Axial (b) Radial (c) Eccentric (d) None of the listed 12. Which is not a possible type of failure in a riveted joint? 1 K1 CO4 (a) Crushing failure of the plate between rivets (d) Shear failure of rivet (c) Tensile failure of the plate between rivets (d) Shear failure of plate 13. What is the requirement to weld a butt joint? 1 K1 CO4 (a) The components must lie in the same plane (b) The components may not necessarily lie in the same plane (c) Bevelling is not required for components with a thickness less than 5 mm 	7	(c) fracture (d	d) each o	of th	e m	ent	ioned			• 1		1.4	1	V1	cor	
(a) Yield Strength (b) Endurance limit (c) Ultimate tensile strength (d) None of the above 8. The phenomenon of decreased resistance of the materials to fluctuating stresses is the main characteristic of failure. (a) Fracture (b) Fatigue (c) Yielding (d) None of the above 9. Shafts are subjected to forces. 1 K1 CO3 (a) Compressive (b) Fansile (c) Shear (d) None of the listed 1 10. The shafts will have same strength on the basis of torsional rigidity, if (a) diameter and length of both shafts is same (b) material of both shafts is same (c) angle of twist for both shafts is same (d) all of above conditions are satisfied 1 K1 CO3 11. Woodruff key permits movement between shaft and the hub. 1 K1 CO3 (a) Axial (b) Radial (c) Eccentric (d) None of the listed 1 12. Which is not a possible type of failure in a riveted joint? 1 K1 CO4 (a) Crushing failure of the plate (b) Shear failure of plate 1 K1 CO4 13. What is the requirement to weld a butt joint? 1 K1 CO4 (c) Bevelling is not required for components with a thickness less than 5 mm 5 mm	1.	when using cast iron components, which of be the failure criterion?	the foll	OW1	ing s	stre	ngth	are	cons	100	erec	1 to	1	ΛI	02	
above 8. The phenomenon of decreased resistance of the materials to fluctuating stresses is the main characteristic of failure. (a) Fracture (b) Fatigue (c) Yielding (d) None of the above 9. Shafts are subjected to forces. 1 K1 CO3 (a) Compressive (b) Tensile (c) Shear (d) None of the listed 1 K1 CO3 10. The shafts will have same strength on the basis of torsional rigidity, if (a) diameter and length of both shafts is same (b) material of both shafts is same (c) angle of twist for both shafts is same (d) all of above conditions are satisfied 1 K1 CO3 11. Woodruff key permits movement between shaft and the hub. 1 K1 CO3 (a) Axial (b) Radial (c) Eccentric (d) None of the listed 1 K1 CO4 (a) Crushing failure of the plate between rivets (d) Shear failure of rivet 1 K1 CO4 (c) Tensile failure of the plate between rivets (d) Shear failure of plate 1 K1 CO4 (a) The components must lie in the same plane 1 K1 CO4 (b) The components may not necessarily lie in the same plane 1 K1 CO4 (c) Bevelling is not required for components with a thickness less than 5 mm 1 K1 CO4		(a) Vield Strength (b) Endurance limit (c) Ultimate tensile strength (d) None of the														
 8. The phenomenon of decreased resistance of the materials to fluctuating stresses is the main characteristic of failure. (a) Fracture (b) Fatigue (c) Yielding (d) None of the above 9. Shafts are subjected to forces. (a) Compressive (b) Tensile (c) Shear (d) None of the listed 10. The shafts will have same strength on the basis of torsional rigidity, if <i>I</i> K1 CO3 (a) diameter and length of both shafts is same (b) material of both shafts is same (c) angle of twist for both shafts is same (d) all of above conditions are satisfied 11. Woodruff key permits movement between shaft and the hub. (a) Axial (b) Radial (c) Eccentric (d) None of the listed 12. Which is not a possible type of failure in a riveted joint? (a) Crushing failure of the plate (b) Shear failure of rivet (c) Tensile failure of the plate between rivets (d) Shear failure of plate 13. What is the requirement to weld a butt joint? (a) The components must lie in the same plane (b) The components may not necessarily lie in the same plane (c) Bevelling is not required for components with a thickness less than 5 mm 		above														
main characteristic of	8.	The phenomenon of decreased resistance of the	the mate	erial	ls to	flu	ctuat	ing s	stres	ses	s is	the	1	K1	CO2	
(a) Fracture (b) Fatigue (c) Yielding (d) None of the above 9. Shafts are subjected to forces. 1 K1 CO3 (a) Compressive (b) Tensile (c) Shear (d) None of the listed 1 K1 CO3 10. The shafts will have same strength on the basis of torsional rigidity, if 1 K1 CO3 (a) diameter and length of both shafts is same (d) all of above conditions are satisfied 1 K1 CO3 (a) Axial (b) Radial (c) Eccentric (d) None of the listed 1 K1 CO3 (a) Crushing failure of the plate (b) Shear failure of rivet 1 K1 CO4 (a) Crushing failure of the plate (b) Shear failure of plate 1 K1 CO4 (a) The components must lie in the same plane (b) The components must lie in the same plane 1 K1 CO4 (b) The components may not necessarily lie in the same plane (c) Bevelling is not required for components with a thickness less than 5 mm 1 K1 CO4		main characteristic of failure.	<					T	0		1					
 (a) Compressive (b) Tensile (c) Shear (d) None of the listed (a) Compressive (b) Tensile (c) Shear (d) None of the listed (a) diameter and length of both shafts is same (b) material of both shafts is same (c) angle of twist for both shafts is same (d) all of above conditions are satisfied (a) Axial (b) Radial (c) Eccentric (d) None of the listed (a) Axial (b) Radial (c) Eccentric (d) None of the listed (b) Radial (c) Eccentric (d) None of the listed (c) Tensile failure of the plate (b) Shear failure of rivet (c) Tensile failure of the plate between rivets (d) Shear failure of plate (a) The components must lie in the same plane (b) The components may not necessarily lie in the same plane (c) Bevelling is not required for components with a thickness less than 5 mm 	0	(a) Fracture (b) Fatigue	(c) Y1e	dın	g		(d) N	lone	of t	he	abo	ove	1	K1	co	
 (a) Compressive (b) Fensite (c) Stream (c) stream (c) note of the fisted 10. The shafts will have same strength on the basis of torsional rigidity, if (a) diameter and length of both shafts is same (b) material of both shafts is same (c) angle of twist for both shafts is same (d) all of above conditions are satisfied 11. Woodruff key permits movement between shaft and the hub. (a) Axial (b) Radial (c) Eccentric (d) None of the listed 12. Which is not a possible type of failure in a riveted joint? (a) Crushing failure of the plate (b) Shear failure of rivet (c) Tensile failure of the plate between rivets (d) Shear failure of plate 13. What is the requirement to weld a butt joint? (a) The components must lie in the same plane (b) The components may not necessarily lie in the same plane (c) Bevelling is not required for components with a thickness less than 5 mm 	9.	(a) Compressive (b) Tensile	(c) She	ar			(d) N	Jone	of	he	list	ted	1	IX I	0.	
 (a) diameter and length of both shafts is same (b) material of both shafts is same (c) angle of twist for both shafts is same (d) all of above conditions are satisfied 11. Woodruff key permits movement between shaft and the hub. (a) Axial (b) Radial (c) Eccentric (d) None of the listed 12. Which is not a possible type of failure in a riveted joint? (a) Crushing failure of the plate (b) Shear failure of rivet (c) Tensile failure of the plate between rivets (d) Shear failure of plate 13. What is the requirement to weld a butt joint? (a) The components must lie in the same plane (b) The components may not necessarily lie in the same plane (c) Bevelling is not required for components with a thickness less than 5 mm 	10.	The shafts will have same strength on the bas	sis of to	rsio	nal r	rigi	dity.	if	01		1150	icu	1	K1	COS	
 (c) angle of twist for both shafts is same (d) all of above conditions are satisfied 11. Woodruff key permits movement between shaft and the hub. [1] K1 CO3 (a) Axial (b) Radial (c) Eccentric (d) None of the listed 12. Which is not a possible type of failure in a riveted joint? [1] K1 CO4 (a) Crushing failure of the plate (b) Shear failure of rivet (c) Tensile failure of the plate between rivets (d) Shear failure of plate 13. What is the requirement to weld a butt joint? [1] K1 CO4 (a) The components must lie in the same plane (b) The components may not necessarily lie in the same plane (c) Bevelling is not required for components with a thickness less than 5 mm 		(a) diameter and length of both shafts is same	e (b) ma	teri	al of	fbc	oth sh	afts	is sa	m	е					
 11. Woodruff key permits movement between shaft and the hub. (a) Axial (b) Radial (c) Eccentric (d) None of the listed 12. Which is not a possible type of failure in a riveted joint? (a) Crushing failure of the plate (b) Shear failure of rivet (c) Tensile failure of the plate between rivets (d) Shear failure of plate 13. What is the requirement to weld a butt joint? (a) The components must lie in the same plane (b) The components may not necessarily lie in the same plane (c) Bevelling is not required for components with a thickness less than 5 mm 		(c) angle of twist for both shafts is same	(d) all	ofa	abov	ve c	ondit	ions	are	sa	tisfi	ied				
 (a) Axial (b) Radial (c) Eccentric (d) None of the listed 1 K1 CO4 (a) Crushing failure of the plate (b) Shear failure of rivet (c) Tensile failure of the plate between rivets (d) Shear failure of rivet (e) Shear failure of plate (f) Shear failure of plate (f) Shear failure of plate (g) Shear failure of plate (h) Shear failure of plat	11.	Woodruff key permits movement betw	ween sha	ıft a	nd t	he	hub.	Ŧ	C .	1		1	1	Kl	COS	
 (a) Crushing failure of the plate (b) Shear failure of rivet (c) Tensile failure of the plate between rivets (d) Shear failure of plate 1 K1 CO4 (a) The components must lie in the same plane (b) The components may not necessarily lie in the same plane (c) Bevelling is not required for components with a thickness less than 5 mm 	10	(a) Axial (b) Radial Which is not a possible type of failure in a riv	(c) Ecc	entr	10		(d) N	lone	of t	he	lıst	ed	1	K1	CO_4	
 (a) Frashing failure of the plate between rivets (b) Shear failure of first (c) Tensile failure of the plate between rivets (d) Shear failure of plate 1 K1 CO4 (a) The components must lie in the same plane (b) The components may not necessarily lie in the same plane (c) Bevelling is not required for components with a thickness less than 5 mm 	12.	(a) Crushing failure of the plate	(b) S	int: ieai	· fail	ure	ofri	vet					1	m	004	
 13. What is the requirement to weld a butt joint? (a) The components must lie in the same plane (b) The components may not necessarily lie in the same plane (c) Bevelling is not required for components with a thickness less than 5 mm 		(c) Tensile failure of the plate between rivets	(d)	She	ar fa	ilu	re of	plate	•							
(a) The components must lie in the same plane(b) The components may not necessarily lie in the same plane(c) Bevelling is not required for components with a thickness less than 5 mm	13.	What is the requirement to weld a butt joint?						•					1	K1	CO4	
(b) The components may not necessarily lie in the same plane(c) Bevelling is not required for components with a thickness less than 5 mm		(a) The components must lie in the same plan	ne													
(c) Bevening is not required for components with a thickness less than 5 mm		(b) The components may not necessarily lie i	in the sa	me	plan	ne	~~ 4 ¹	-								
(d) There is no requirement to weld a buff joint		(c) Bevening is not required for components (d) There is no requirement to weld a buttion	with a t	nici	cnes	s ie	ss tha	an 5	mm							

14.	The pin in knuckle joint is subjected to stress.	1	K1	<i>CO</i> 4				
	(a) torsional shear (b) double shear (c) axial compressive (d) axial tensile							
15.	Find the shear stress in the spring wire used to design a helical compression sprig if a	1	K1	<i>CO5</i>				
	load of 1200N is applied on the spring. Spring index is 6, and wire diameter 7mm.							
	(a) 452.2 N/mm ² (b) 468.6 N/mm ² (c) 512.2 N/mm ² (d) None of the listed							
16.	What will happen if stresses induced due to surge in the spring exceeds the endurance	1	K2	CO5				
	limit stress of the spring.							
	(a) Fatigue Failure (b) Fracture (c) None of the listed (d) Nipping							
17.	Which of the following are functions of flywheel?	1	K1	<i>CO5</i>				
	(a) Store and release energy during work cycle							
	(b) Reduce power capacity of the electric motor							
	(c) Reduce amplitude of speed fluctuations							
	(d) All of the listed							
18.	A journal bearing is a contact bearing working on the hydrodynamic	1	K2	CO6				
	lubrication and which supports load in direction.							
	(a) Sliding, Axial (b) Rolling, Radial (c) Sliding, Radial (d) Rolling, Axial							
19.	The bearing is subjected to a radial load of 4000N. Expected life for 90% bearings is	1	K1	<i>CO6</i>				
	9000h and shaft is rotating at 1500rpm. Calculate the dynamic load capacity.							
	(a) 42.21kN (b) 37.29kN (c) 26.33kN (d) 35.22kN							
20.	There is problem of alignment in deep groove ball bearings.	1	K2	<i>CO6</i>				
	(a) Yes (b) It aligns itself only in some particular cases							
	(c) No, it is self-aligning (d) Can't be determined							
PART - B (10 × 2 = 20 Marks)								
Answer ALL Questions								
21.	Define fits and tolerances.	2	K1	<i>CO1</i>				
22.	Define fluctuating stresses.	2	K1	<i>CO2</i>				
23.	List some advantages of hollow shafts over solid shafts.	2	K2	CO3				
24.	State the difference between rigid and flexible coupling.	2	K1	СО3				
25.	Discuss the need for preloading of bolts.	2	K2	<i>CO</i> 4				
26.	List the various modes of failure of fork end in knuckle joint.	2	K1	<i>CO</i> 4				
27.	State the various functions of a spring. In which type of spring the behaviour is	2	K1	<i>CO5</i>				
	non-linear?							
28.	Name the stresses set up in an IC engine connecting rod.	2	K1	<i>CO5</i>				
29.	. List any four advantages of rolling contact bearings over sliding contact bearings.			<i>CO6</i>				
30.	Give two applications where the inner race is rotating and outer race is stationary in	2	K2	<i>CO6</i>				
	rolling contact bearings.							

PART - C ($6 \times 10 = 60$ Marks)

Answer ALL Questions

31. a) A punch press, used for stamping sheet metal, has a punching capacity of 50 ¹⁰ ^{K3} ^{CO1} kN. The section of the frame is as shown in Figure. Find the resultant stress at the inner and outer fibers of the section.

b) Figure shows a C-clamp, which carries a load P of 25 kN. The cross-section of ¹⁰ K³ CO1 the clamp is rectangular and the ratio of width to thickness (b/t) is 2:1. The clamp is made of cast steel of Grade 20-40 (S_{ut} = 400 N/mm²) and the factor of safety is 4. Determine the dimensions of the cross-section of the clamp.

- 32. a) A machine component is subjected to a flexural stress which fluctuates ¹⁰ K³ CO² between +300 MN/m² and -150 MN/m². Determine the value of minimum ultimate strength according to 1. Gerber relation; 2. Modified Goodman relation; and 3. Soderberg relation. Take yield strength = 0.55 Ultimate strength; Endurance strength= 0.5 Ultimate strength and factor of safety = 2. OR
 - b) A mild steel shaft of 50 mm diameter is subjected to a bending moment of ¹⁰ K3 CO2 2000 N-m and a torque T. If the yield point of the steel in tension is 200 MPa, find the maximum value of this torque without causing yielding of the shaft according to 1. The maximum principal stress theory and 2. The maximum shear stress theory.
- 33. a) The shaft, as shown in Figure, is driven by pulley B from an electric motor. ¹⁰ K3 CO3 Another belt drive from pulley A is running a compressor. The belt tensions for pulley A is 1500 N and 600 N. The ratio of belt tensions for pulley B is 3.5. The diameter of pulley A is 150 mm and the diameter of pulley B is 480 mm. The allowable shear stress is 85 MPa. Taking torsion and bending factors as 1.25 and 1.75 respectively, find the shaft diameter.

b) Design a muff coupling to connect two shafts transmitting 40kW at 120 rpm. 10 K3 CO3 The permissible shear and crushing stress for the shaft and key material (mild steel) are 30 MPa and 80MPa respectively. The material of muff is cast iron with permissible shear stress of 15 MPa. Assume that the maximum torque transmitted is 25 per cent greater than mean torque.

OR

34. a) Determine the length of the weld run for a plate size 120mm wide and 15mm ¹⁰ ^{K3} ^{CO4} thick to be welded to another plate by means of a) a single transverse weld and b) double fillet welds when the joint is subjected to variable load.

OR

- b) Design a cotter joint to connect piston rod to the crosshead of a double acting ¹⁰ K3 CO4 steam engine. The diameter of the cylinder is 300mm and the steam pressure is 1N/mm². The allowable stresses for the material of cotter and piston rod are as follows. Tensile stress50MPa, Shear Stress 40 MPa and Compressive stress 84MPa.
- 35. a) A semi-elliptical laminated spring 900 mm long and 55 mm wide is held ¹⁰ K³ CO⁵ together at the centre by a band 50mm wide. If thickness of each leaf is 5mm, find the number of leaves required to carry a load of 4500 N. Assume a maximum working stress of 490 MPa. If the two of these leaves extend the full length of the spring, find the deflection of spring. The young's modulus for the spring material may be taken as 210 kN/mm².

OR

- b) Evaluate the dimensions of an I-section connecting rod for a petrol engine 10 K3 CO5 from the following data: Diameter of the piston = 110 mm; Mass of the reciprocating parts = 2kg; Length of the connecting rod from the centre to centre = 325mm; Stroke length = 150mm RPM = 1500 with possible over speed of 2500; Compression ratio = 4:1; Maximum explosion pressure = 2.5 N/mm².
- 36. a) A full journal bearing of 50 mm diameter and 100 mm long has a bearing 10 K3 C06 pressure of 1.4 MPa. The speed of the journal is 900 rpm and the ratio of journal diameter to the diametrical clearance is 1000. The bearing is lubricated with oil whose absolute viscosity at the operating temperature of 75°C may be taken as 0.011 kg/m-s. The room temperature is 35°C. Calculate (i) The amount of artificial cooling required and (ii) The mass of the lubricating oil required, if the difference between the outlet and inlet temperature of the oil is 10°C. Take specific heat of the oil as 1850 J/kg/°C.

OR

b) Select a single row deep groove ball bearing for a radial load of 4000N and an ¹⁰ ^{K3} ^{CO6} axial load of 5000N, operating at a speed of 1600 rpm for an average life of 5 year at 10 hours per day. Assume uniform and steady load.