	Re	g. No.							
Question Paper Code			22	39					

B.E. / B.Tech - DEGREE EXAMINATIONS, NOV / DEC 2023

Seventh Semester

Mechanical Engineering

(Common to Production Engineering)

20MEPC701 - FINITE ELEMENT ANALYSIS

(Regulations 2020)

Duration: 3 Hours

Max. Marks: 100

PART - A $(10 \times 2 = 20 \text{ Marks})$

Answer ALL Questions

1.	Compare the Ritz technique with the nodal approximation method.	Marks, K-Level,CO 2,K2,CO1
2.	State the three phases of the finite element method.	2,K1,CO1
3.	Differentiate global and local coordinates.	2,K2,CO2
4.	List out the stiffness matrix properties.	2,K1,CO2
5.	Define plane strain analysis.	2,K1,CO3
6.	Write down the stress strain relationship matrix for plane stress condition.	2,K2,CO3
7.	What is meant by Transverse vibration?	2,K1,CO4
8.	Illustrate the expression of longitudinal vibration of bar element.	2,K2,CO4
9.	Differentiate between Isoparametric, super parametric and sub- parametric elements.	2,K2,CO5
10.	Give the shape functions for a four-noded linear quadrilateral element in	2,K2,CO5

natural coordinates.

PART - B $(5 \times 13 = 65 \text{ Marks})$

Answer ALL Questions

11. a) Using Rayleigh-Ritz method obtain an approximate solution for the ^{13,K2,CO1} differential equation given below with boundary conditions y(0) = 0 and y(1) = 0.

$$\frac{d^2y}{dx^2} - 10x^2 = 5 \ ; \ 0 \le x \le 1$$
OR

b) Solve the differential equation for a physical problem expressed as ^{13,K2,CO1} d²y/dx² + 100 = 0, 0 ≤ x ≤ 10 with boundary conditions as y (0) = 0 and y(10) = 0 using the trial function y = a₁x (x-10) find the value of the parameters a₁ by the following methods listed below.
(i) Point collocation method (ii) Sub domain collocation method

(iii) Least squares method and (iv) Galerkin method.

12. a) Consider a bar as shown in figure an axial load of 200 kN is applied at a point P. Take $A_1 = 2400 \text{ mm}^2$, $E_1 = 70 \times 10^9 \text{ N/mm}^2$, $A_2 = 600 \text{ mm}^2$ and $E_2 = 200 \times 10^9 \text{ N/mm}^2$. Calculate the following (i) the nodal displacement at point P (ii) Stress in each element (iii) Reaction force.

13.K3.CO2

OR

b) For the beam as shown in the fig. compute slope at the hinged support 13,K3,CO2 points, E = 200 GPa and I = 4x10-6 m4. Use two beam elements.

13. a) Calculate the strain displacement matrix for the CST element shown ^{13,K3,CO3} in the figure given below.

- b) Develop shape function for axisymmetric triangular elements. *13,K3,CO3*
- 14. a) A wall of 0.6 m thickness having thermal conductivity of 1.2 W/mK. ^{13,K4,CO4} The wall is to be insulated with a material of thickness 0.06 m having an average thermal conductivity of 0.3 W/mK. The inner surface temperature is 1000° C and outside of the insulation is exposed to atmospheric air at 30°C with Heat transfer coefficient of 35 W/m²K. Calculate the nodal temperatures.

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create 12239

b) Find the Natural frequencies in the vibration of two elements simply ^{13,K4,CO4} supported beam having the parameters as length L = 2m, area of crosssection A = 30 x 10^{-4} m² and moment of inertia I = 4 x 10^{-10} m⁴, density $\rho = 7800$ kg/m³ and Young's modulus E = 200 GPa.

15. a) For the four noded quadrilateral element shown in the figure. Calculate ^{13,K4,CO5} the Jacobian matrix and evaluate its value at the point $\varepsilon = 0.5$, $\eta = 0.5$

b) Evaluate the integral,

$$I = \int_{-1}^{1} Cos \ \frac{\pi x}{2} dx$$

by applying 3 point Gaussian quadrature and compare with exact solution.

PART - C $(1 \times 15 = 15 \text{ Marks})$

16. a) For the two bar truss shown in the fig, Estimate the displacements of 15,K3,CO6 node 1 and the stress in element 1-3.Take E = 70 GPa, A = 200 mm²

b) For the plane stress CST element as shown in the fig. Calculate 15,K3,CO6 element stiffness matrix. Assume E= 210 x 10^3 N/mm². v=0.25, t=10mm. The co-ordinates are given in mm.

13,K4,CO5

