			,										
			Reg. No.										
		Question Paper Code	1259	6									
		B.E. / B.Tech DEGREE EXAMIN	NATIONS,	APRI	L/	′ M	[A]	Z 2	024	4			
	Seventh Semester												
	Mechanical Engineering												
201	меру	W701 - 3D PRINTING AND SUSTAIN	ABLE DE	SIGN	W	ІТ	ΗI	ĹA	BC)RA	ТО	RY	ľ
		Regulations	- 2020										
Du	ration	: 3 Hours						Ma	ax.	Ma	rks:	100	0
		$PART - A (10 \times 2 = Answer A I I O$	20 Marks)						Ι	Marks	K– Leve	, ce	0
1.	Desc	ribe the need for the development of 3D	nrinting tec	hnolos	σV.					2	K2	CC)]
2.	Expa	and the term (i) SLM (ii) VP.	printing tee	linereş	57.					2	K1	CC)]
3.	Defi	ne "support structure" in the context of ac	lditive manı	ıfactu	ring	<u>.</u>				2	K1	СС)2
4.	Defi	ne model slicing and its significance in ac	lditive man	ufactu	ring	g.				2	K1	CC)2
5.	Desc	ribe the key principle behind Fused Dep	osition Mod	leling	(FI	DN	I) ir	13	D	2	K2	CC)3
6.	Prov:	ing. ide examples of applications where Sele nonly used.	ective Laser	Sinte	erin	g (SL	S)	is	2	K1	СС)3
7.	Give	some examples of Sustainable Developm	nent.							2	K1	CC)4
8.	Defin	ne the term Design for Longevity.								2	K1	CC)4
9.	Defin	ne system map.								2	K1	CC)5
10.	Defin	ne Remanufacturing.								2	K1	CC)5
		PART - B (5 × 13 = Answer ALL O	65 Marks) Jestions										
11.	a)	Explain in detail about any two additive suitable diagram.	e manufactu	ring p	oroc	es	ses	wi	th	13	K2	CC)]
	b)	Illustrate the applications of 3D printin examples.	g in Indust	ry 4.0	wi	th	suit	tab	le	13	K2	CC)]
12.	a)	Explain the key steps involved in CAD manufacturing. How do data requirem modeling and additive manufacturing?	model prep ents differ	aratio betwe	n fe en	or tra	add diti	itiv on	ve al	13	K2	СС)2
	b)	What is Rapid Tooling? What its types? diagram.	' Explain ar	iy one	e wi	th	suit	tab	le	13	K2	СС)2
													~ ~

13. a) Provide an in-depth overview of the Selective Laser Sintering (SLS) ¹³ K2 CO3 process, including its advantages, limitations, and notable applications.

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create

12596

OR

b) Summarize the concept of Material Jetting in 3D printing and provide ¹³ K² CO³ examples of industries where it is particularly beneficial.

14.	a)	Explain in detail about the stages of product life cycle.	13	K2	<i>CO4</i>
	b)	Summarize various systems approaches to design.	13	K2	<i>CO</i> 4
15.	a)	Explain in detail about the four stages of MSDS with its subsystems.	13	K2	CO5

OR

b) What are the design tools for Sustainable Development System? ¹³ K2 CO5 Explain any six.

PART - C (1 × 15 = 15 Marks)

16. a) Discuss in detail about the opportunities of sustainable manufacturing ¹⁵ K2 CO2 in industry 4.0.

OR

b) Explore in detail about Laser Engineered Net Shaping (LENS) and its ¹⁵ K2 CO4 significance in the aerospace and medical industries.

12596