Reg. No.													
----------	--	--	--	--	--	--	--	--	--	--	--	--	--

Question Paper Code

12283

B.E./B.Tech - DEGREE EXAMINATIONS, NOV/DEC 2023

Seventh Semester

Mechanical Engineering

20MEPW701 – 3D PRINTING AND SUSTAINABLE DESIGN WITH LABORATORY

(Regulations 2020)

Duration: 3 Hours Max. Marks: 100

$PART - A (10 \times 2 = 20 Marks)$

Answer ALL Questions

1.	Define Additive Manufacturing and provide its primary classifications.	Marks, K-Level, CO 2,K1,CO1
2.	State any four main applications of 3D printing in Industry 4.0.	2,K1,CO1
3.	What are the essential data requirements for effective rapid prototyping?	2,K2,CO2
4.	What is the significance of model slicing in additive manufacturing?	2,K2,CO2
5.	Differentiate between Indirect and Direct Selective Laser Sintering (SLS)	2,K1,CO3
	processes.	
6.	List out any four benefits of Laminated Object Manufacturing (LOM).	2,K1,CO3
7.	What is a critical aspect to consider in assessing sustainable design?	2,K1,CO4
8.	Define sustainability in the context of design.	2,K1,CO4
9.	Distinguish between Remanufacturing and Demanufacturing.	2,K2,CO5
10.	What is meant by the term "Cleaner Production"?	2,K1,CO5

$PART - B (5 \times 13 = 65 Marks)$

Answer ALL Questions

11. a) Discuss the need and development of, 3D printing technology, 13,K3,CO1 highlighting the key stages and developments that have led to its current state.

OR

- b) Explore the applications of 3D printing in disaster management ^{13,K2,CO1} scenarios, discussing its uses, benefits, and limitations in addressing crises and emergencies.
- 12. a) Explain the importance of data formats and data interfacing in the ^{13,K3,CO2} context of additive manufacturing, emphasizing their role in the preparation of manufacturing-ready files.

OR

b) Discuss the critical components of CAD model preparation required 13,K2,CO2 for data processing in rapid prototyping techniques.

13. a) Describe the methodology and application of Fused Deposition ^{13,K3,CO3} Modeling (FDM).

OR

- b) Discuss the detailed working principles and variables associated with ^{13,K3,CO3} Binder Jetting and Material Jetting processes in additive manufacturing.
- 14. a) Explain the different Product Life Cycle Assessment Techniques in ^{13,K3,CO4} terms of their applicability and effectiveness in ensuring environmental friendliness.

OR

- b) Elaborate on the pathways to achieve sustainability in design, 13,K4,CO4 emphasizing the main objectives and strategies employed.
- 15. a) Provide an overview of the khadi movement and its role as a precursor 13,K4,CO5 to the development of PSS thinking. Discuss how the movement contributed to sustainable and innovative approaches in product-service systems.

OR

b) Explore the opportunities and challenges associated with sustainable ^{13,K4,CO5} manufacturing in Industry 4.0. Analyze the role of innovative technology and Industry 4.0 concepts in fostering sustainability within manufacturing practices.

PART - C $(1 \times 15 = 15 \text{ Marks})$

16. a) Describe and contrast Hybrid Additive Manufacturing techniques with Wire Arc Additive Manufacturing. Provide a case study that highlights the practical application of both techniques in the manufacturing industry, with their advantages.

\mathbf{OR}

b) Discuss the approaches to improving productivity while maintaining sustainable manufacturing methods. Provide a case study illustrating how a process industry has successfully integrated productivity enhancement techniques with sustainable manufacturing practices.