	Reg.	No.										
Question Paper Coo	le		12	298	0						-	

B.E. / B.Tech. - DEGREE EXAMINATIONS, NOV / DEC 2024

Fourth Semester

Mechanical and Automation Engineering

20MUPC404 - COMPUTER AIDED DESIGN

Regulations - 2020

Duration: 3 Hours

Max. Marks: 100

12980

Di		IN. IVIAI	KS. 1	00
	PART - A (MCQ) (20 × 1 = 20 Marks)	Marks	<u>K</u> -	со
	Answer ALL Questions			
1.	Which of the following is NOT a key phase in the design process?	1	K1	COI
	(a) Conceptual design (b) Preliminary design (c) Sequential design (d) Detailed design			
2.	Which of these is an example of a 2D transformation?	1	K1	<i>CO1</i>
	(a) Scaling (b) Translation (c) Rotation (d) All of the above			
3.	Which of the following transformations can be used to change the size of an object?	1	K1	COI
	(a) Scaling (b) Rotation (c) Translation (d) Reflection			
4.	What type of curve is represented using control points and blending functions?	1	K1	<i>CO2</i>
	(a) Hermite curve (b) Bezier curve (c) B-Spline curve (d) All of the above			
5.	What differentiates a Bezier surface from a B-Spline surface?	1	K1	<i>CO2</i>
	(a) Bezier surfaces lack local control			
	(b) B-Spline surfaces use knots for local control			
	(c) Bezier surfaces use Bernstein polynomials			
	(d) All of the above			
6.	defines the continuity between two B-Spline curves.	1	K2	<i>CO2</i>
	(a) degree of the curve (b) knot vector (c) control points (d) tangent vectors			
7.	modeling technique represents solids as a combination of primitive shapes?	1	K2	СО3
	(a) CSG (b) B-rep (c) Sweep representation (d) Spatial partitioning			
8.	Which of the following operations are typically used in CSG?	1	K1	СО3
	(a) Union, Intersection, and Difference (b) Translation and Rotation			
	(c) Scaling and Shearing (d) Rendering and Clipping			
9.	How does B-rep define a solid object?	1	K1	СО3
	(a) By its surface boundaries (b) By combining primitive shapes			
	(c) Using volumetric data (d) Through discrete points			
10.	algorithm is commonly used for hidden surface removal.	1	K2	<i>CO</i> 4
	(a) Z-buffer algorithm (b) Dijkstra's algorithm (c) QuickSort (d) Flood-fill algorithm			
11.	What is the purpose of shading in computer graphics?	1	<i>K1</i>	<i>CO</i> 4
	(a) To enhance the realism of a 3D model (b) To remove hidden lines			
	(c) To increase computational speed (d) To display wireframe models			
12.	Which hidden surface removal algorithm is object-based rather than image-based?	1	K1	<i>CO</i> 4
	(a) Z-buffer algorithm (b) Painter's algorithm			
	(c) Binary Space Partitioning (d) Ray casting			
13.	is the primary purpose of assembly modeling in CAD.	1	K2	<i>CO5</i>
	(a) To design individual components (b) To analyze the interaction of multiple parts	3		
	(c) To create 2D drawings (d) To simulate electrical circuits			
14.	What is the purpose of tolerance analysis in assembly modeling?	1	K1	<i>CO5</i>
	(a) To check for color consistency (b) To ensure parts fit together correctly			
	(c) To calculate thermal expansion (d) To measure component weight			
15.	Mass property calculations in CAD include of the following.	1	K2	<i>CO5</i>
	(a) Volume and density (b) Weight and center of gravity			
	(c) Surface area (d) All of the above			

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create

16.		is the purpose of mechanism simulation?	1	K1	CO5	
		analyze thermal performance				
		verify motion and interaction of components create photo-realistic renderings				
		determine electrical conductivity				
17.		does GKS stand for in computer graphics?	1	K1	<i>CO6</i>	
	. ,	aphics Kernel Standard (b) General Knowledge System				
18.	(c) Gr	aphical Kernel System (d) General Kinetic System standard is commonly used for data exchange in CAD applications.	1	K2	<i>CO</i> 6	
10.	$\overline{(a)}$ O	penGL (b) IGES (c) HTML (d) JPEG	1	112	000	
19.		is the primary use of CALS?	1	K1	<i>CO6</i>	
		handle graphical and engineering data				
		store image data				
		r web-based graphics rendering manage data storage in CAD software				
20.	(u) I (is the full form of the CALS standard.	1	K2	<i>CO6</i>	
20.	$\overline{(a) Cc}$	intinuous Acquisition and Life-cycle Support				
		ommon Acquisition and Logistics Support				
	· ·	mprehensive Automated Logistics System				
	(d) Ce	entralized Acquisition Logistics System $PAPT = P(10 \times 2 = 20 \text{ Morbs})$				
		PART - B $(10 \times 2 = 20 \text{ Marks})$ Answer ALL Questions				
21.	What	is sequential Engineering?	2	K1	<i>CO1</i>	
22.	Defin	e Scaling.	2	<i>K1</i>	COI	
23.	State	the limitations of the Hermite Curve?	2	<i>K1</i>	<i>CO2</i>	
24.	. Distinguish Analytic and Synthetic curve.					
	5. What is meant Boolean operations? List the types.					
		in why B rep modeling approaches more widely followed than the CSG approach.	2	K2	CO3	
	-	entiate between object space method and image space methods.	2	K2	<i>CO4</i>	
		are silhouette edges?	2	K1	<i>CO4</i>	
		in the need for tolerances.	2	K2	CO5	
	-	ine importance of standards in CAD.	2	K2	<i>CO6</i>	
50.						
		PART - C (6 × 10 = 60 Marks)				
		Answer ALL Questions				
31.	a)	What is meant by concurrent engineering? Describe the various schemes for	10	K2	COI	
		concurrent engineering.				
	1 \	OR	10	_V 2	CO1	
	b)	Explain the different types of 2D transformations with examples.	10	K2	<i>CO1</i>	
			10	W2	<i>co</i> 2	
32.	a)	What are B-spline curves? What are the properties and characteristics of B-spline	10	K2	<i>CO2</i>	
		curves? OR				
	b)	Describe the characteristics of Bezier curve with the control points, the order of	10	К2	<i>CO2</i>	
	0)	continuity and What do you understand by blending function.				
33.	a)	What do you understand by the Boundary representation (B rep) technique of	10	K2	CO3	
		solid modeling? Explain briefly the data structure of the B-rep solid model.				
		OR				

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create

	b)	With a neat sketch explain the most commonly used solid primitives or entities for solid modeling.	10	К2	СО3		
34.	a)	Explain Z buffer algorithm with its operations.	10	K2	<i>CO4</i>		
		OR					
	b)	Explain various shading techniques with neat sketch.	10	К2	<i>CO</i> 4		
35.	a)	Describe bottom up and top down assembly with example.	10	K2	CO5		
OR							
	b)	Describe the various steps in assembly analysis.	10	K2	<i>CO5</i>		
36.	a)	Explain in detail about GKS and features of the Graphics Kernel System.	10	K2	<i>CO6</i>		
		OR					
	b)	State the need & requirement of product data exchange between dissimilar CAD systems. Describe the STEP methodology.	10	K2	<i>CO6</i>		