	Reg. No.										
	Question Paper Code12795										
B.E. / B.Tech DEGREE EXAMINATIONS, APRIL / MAY 2024											
Fourth Semester											
Mechanical and Automation Engineering											
20MUPC404 - COMPUTER AIDED DESIGN											
Regulations - 2020											
Du	ration: 3 Hours	Ma	x. Ma	rks:	100)					
	PART - A $(10 \times 2 = 20 \text{ Marks})$ Answer ALL Questions		Mark	K– S Level	с)					
1.	Compare sequential and concurrent engineering.		2	K2	CO	1					
2.	Define Clipping.		2	Kl	CO	1					
3.	List the limitations of the Hermite curve.		2	Kl	CO	2					
4.	Define Coons patch.		2	Kl	CO	2					
5.	Why removal of the hidden line is important?		2	K2	CO	4					
6.	Classify the various methods of shading.		2	K2	CO	4					
7.	List the advantages of tolerance analysis.		2	K1	CO	5					
8.	Define interference checking.		2	Kl	CO	5					
9.	What is an Open graphics library?		2	K1	CO	6					
10.	Define CALS.		2	K1	CO	6					

PART - B (5 × 13 = 65 Marks)

Answer ALL Questions

11. a) Classify the various stages of a typical product cycle and discuss the ¹³ K² CO1 importance of each stage.

OR

- b) Explain the homogeneous coordinate transformation system and ¹³ K² CO1 matrix.
- 12. a) What do you understand by the Boundary representation (B rep) ¹³ K² CO³ technique of solid modeling? Explain briefly the data structure of the B-rep solid model.

OR

- b) Classify the types of solid modeling and explain the constructive solid ¹³ K² CO³ modeling (CSG) technique with suitable examples.
- 13. a) Discuss any two hidden surface removal algorithms with suitable ¹³ K² CO4 examples.

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create

12795

OR

- b) Illustrate the following color models.
 (i) RGB color model.
 (ii) CMY color model.
- 14. a) Explain assembly modelling in CAD and its types with suitable ¹³ K² CO5 examples.

OR

- b) Describe the mass properties calculations in the design with examples. 13 K2 CO5
- 15. a) Outline the Graphics Kernel System (GKS) with a suitable example. 13 K2 CO6 OR

b) Explain the IGES data exchange format with a neat sketch. 13 K2 CO6

PART - C $(1 \times 15 = 15 \text{ Marks})$

		OR			
	ii)	Derive the transformation matrix for a Hermite curve.	7	K2	<i>CO2</i>
16.	a) i)	Explain different features of a Bezier curve with construction details.	8	K2	<i>CO2</i>

b) What are B-spline curves? What are the properties and characteristics ¹⁵ K² CO² of B-spline curves?