		Reg. I	No.												
	Question Paper Co	ode		13	3252	2									
	Question Luper et	ouc		1.	202										
	B.E. / B.Tech DEGREE EX	XAMIN	ATI	ON	NS, I	NO	V /	DE	C 2	024					
	Fift	th Semes	ter												
	Mechanical and A	utomati	on E	ng	gine	erir	ıg								
	20MUPC502 - MECHANICS AND CO	ONTRO	LOI	FF	ROF	30 1	ГІС	M	ANI	PU	LAT	OR			
	Regula	ations - 2	020												
Du	ration: 3 Hours										Ma	x. M	lark	s: 1	00
	PART - A (MCO)	(20×1)	= 20	м	[ark	(e)								K	
	Answer Al	LL Oues	tions	171								Mar	ks L	n – evel	со
1.	Who is widely regarded as the "father of moder	n robotic	s"?									1		K1	COI
	(a) Charles Babbage (b) Alan Turing (c	c) Isaac A	Asim	ov		(d	I) C	ieo	rge]	Dev	ol				
2.	Which of the following represents the rotation	angles i	n the	e p	osit	ion	ing	of	obje	cts	in 3D	1		K1	COI
	space?	-		-			-		•						
	(a) Yaw, Pitch, and Roll	(b) L	engtl	h, '	Wid	th,	and	He	ight						
	(c) Distance, Speed, and Acceleration	(d) 1	Х, Ү,	, ar	nd Z	C co	ordi	inat	es						
3.	In robotics, what is a serial manipulator?											1		KI	COI
	(a) A robot with multiple end effectors					•					.1				
	(b) A robot with links and joints in a single c	chain, w	here	on	e jo	ont	con	ineo	cts t	o ai	nother	•			
	(c) A robot that only operates on a single axis (d) A robot that uses score instead of maters														
1	(d) A robot that uses gears instead of motors	tio aveto	m?									1		K1	COI
4.	(a) To control the movement of joints	one syste	<u></u>									1			001
	(a) To control the movement of joints (b) To interface with the environment and perfo	rm tasks	such	าว	s or	inni	nσ	or v	veld	ina					
	(c) To provide the robot with power	iiii taske	Suci	1 0	5 gr	ippi	ng (51 V	veru	mg					
	(d) To measure the weight of the robot														
5.	What is the main purpose of solving forward kin	nematics	in ro	obo	otics	s?						1		K1	CO2
	(a) To determine the joint angles of the robot														
	(b) To determine the end-effector position and c	orientatio	on fro	om	the	joiı	nt ai	ngle	es						
	(c) To control the speed of the robot														
	(d) To adjust the robot's power consumption														
6.	Inverse kinematics is primarily used to:											1		KI	CO2
	(a) Determine the robot's joint angles from a des	sired end	l-effe	ecto	or p	osıt	10N	anc	l ori	enta	tion				
	(b) Control the force applied by the end effecter	ſ													
	(c) Calculate the torque required at each joint (d) Predict the rebet's power consumption														
7	Which approach is commonly used to solve for	word kin	emat	inc	for	· rot	onte	2				1		K1	<i>CO2</i>
1.	(a) Force-Torque Analysis	walu Kili M Geome	trica	llos Il a	nd	10ι Δ1σι	ehra	i nic l	Met	hode	2	-			
	(c) Energy Minimization Approach (d	1) Path P	lanni	ng		pori	thm	IS I	lviet.	nou	3				
8.	What is the Denavit-Hartenberg (DH) convention	on used f	or in	ro	bot	ics?	,					1		K1	<i>CO2</i>
	(a) Calculating the power consumption of a rob	ot													
	(b) Describing the robot's joint forces and torqu	ies													
	(c) Systematically representing the spatial relati	onship b	etwe	en	linl	cs it	nar	ob	ot						
	manipulator														
_	(d) Calculating the robot's velocity profile														<i></i> -
9.	How many degrees of freedom (DOF) does a 2H	P (planar) rob	ot	typi	call	ly h	ave	?			1		ΚI	CO3
	(a) 1 (b) 2	(c) 3				(0	1) 4								

10.	What is the primary challenge in solving inverse kinematics for robotic systems? (a) Determining the position of the end effecter	1	K1	CO3
	(b) Solving for joint angles from the end-effector position, which may result in multiple or			
	no solutions			
	(c) Computing the torque required for movement			
	(d) Finding the velocity of the end effector			~ ~ •
11.	Which of the following is a common issue encountered in inverse kinematics?	1	Kl	CO3
	(a) Lack of precision in forward kinematics			
	(b) Singularities where the robot's end effector loses degrees of freedom			
	(c) Overheating of the robot's motors			
	(d) Excessive weight of the end effector			
12.	In a 2 DOF planar robot, the inverse kinematics solution involves finding which	1	K1	CO3
	parameters?			
	(a) The robot's velocity and acceleration			
	(b) The joint angles corresponding to a desired end-effector position			
	(c) The robot's weight and energy consumption			
	(d) The torque and power of the motors			
13.	What is the general expression for the kinetic energy of an n-link robot?	1	K1	<i>CO4</i>
	(a) $\frac{1}{2}$ mv ²			
	(b) The sum of the kinetic energy of each link, considering both translational and			
	rotational energies			
	(c) The potential energy of each link			
	(d) The torque required for each joint			
14.	Which principle in mechanics is the Lagrange equation derived from?	1	K1	<i>CO4</i>
	(a) Newton's Second Law (b) The principle of least action			
	(c) The law of conservation of energy (d) Hooke's Law			
15.	What is the purpose of the Lagrange multiplier in mechanical systems?	1	K1	<i>CO4</i>
	(a) To determine the energy efficiency of the system			
	(b) To introduce constraints into the equations of motion			
	(c) To calculate the velocity of the system			
	(d) To find the maximum kinetic energy of the system			
16.	What is the primary purpose of the manipulator control problem in robotics?	1	K1	<i>CO4</i>
	(a) To design the physical structure of the robot			
	(b) To ensure accurate control of the manipulator's motion and forces at the joints			
	(c) To calculate the energy consumption of the robot			
	(d) To manage the power supply for the robot's sensors			
17.	What does the linear second-order model of a manipulator typically describe?	1	K1	CO5
	(a) The energy loss in a robot system			
	(b) The dynamic behavior of the robot, including inertia, damping, and stiffness			
	(c) The control algorithm used in robotic navigation			
	(d) The design of the robot's sensor network			
18.	Which of the following is a key function of the power amplifier in robotic control?	1	K1	CO5
	(a) To provide feedback on the robot's position			
	(b) To amplify the control signal for driving the actuators			
	(c) To compute the inverse kinematics of the robot			
	(d) To measure the torque at each joint			
19.	Vhich type of actuator is commonly used for precise position control in robotic joints?		K1	CO5
	(a) Hydraulic actuator (b) Stepper motor (c) Pneumatic actuator (d) Linear actuator			
20.	In force control schemes, the primary goal is to:	1	K1	CO5
	(a) Ensure the position of the end effecter			
	(b) Maintain a specified force exerted by the end effector while interacting with its			
	environment			
	(c) Calculate the velocity of the robot			
	(d) Minimize the energy consumption of the robot			

PART - B ($10 \times 2 = 20$ Marks)

	Answer ALL Questions			
21.	Define work volume of a robot.	2	K1	<i>CO1</i>
22.	What is the significance of precision and repeatability in robotics?	2	K2	<i>CO1</i>
23.	Differentiate forward and inverse kinematics.	2	Kl	<i>CO2</i>
24.	Write the significance of the geometric approach in forward kinematics.	2	Kl	<i>CO2</i>
25.	List two common issues in solving inverse kinematics problems.	2	K1	СОЗ
26.	What is the inverse kinematics solution for a 2 DOF planar robot?	2	K1	CO3
27.	What is the general expression for kinetic energy in robotics?	2	K1	<i>CO4</i>
28.	What is meant by "joint torque" in the context of a robotic manipulator?	2	K1	<i>CO</i> 4
29.	Define a linear second-order model of a manipulator.	2	K1	<i>CO5</i>
30.	What are the components of a robotic vision system?	2	K1	<i>CO5</i>

PART - C ($6 \times 10 = 60$ Marks)

	Answer ALL Questions			
31.	a) Explain about various components of a robot.	10	K2	CO1
	b) Explain the different types of grippers used in robot.	10	K2	CO1
32.	a) Explain robot control and design with parameters in detail.	10	K2	<i>CO2</i>
	b) Explain the need and methodology of forward kinematics for a SCARA robot.	10	K2	<i>CO2</i>
33.	a) Define inverse kinematics and explain its significance in robotic motion planning.	10	K2	СО3
	b) Explain the steps involved in solving inverse kinematics of a manipulator in detail.	10	K2	CO3
34.	a) Explain the equations of motion with its specifications and LE dynamic model algorithm.	10	K2	<i>CO4</i>
	OR b) Explain the relationship between potential energy and the equilibrium of robotic systems.	10	K2	<i>CO4</i>
35.	a) Discuss the manipulator control problem in robotics.	10	K2	CO5
	b) Explain briefly about electrical actuators.	10	K2	CO5
36.	a) i) Discuss the role of potential energy in the safety analysis of robotic systems.	5	K2	<i>CO4</i>
	ii) Discuss the importance of feedback mechanisms in robotic control systems.	5	K2	CO5
	b) i) Explain how understanding the equations of motion can aid in developing control algorithms for robotic systems.	5	К2	<i>CO4</i>
	ii) Explain the components of a robotic vision system.	5	K2	CO5