Reg. No.	
----------	--

Question Paper Code 12403

B.E. / B.Tech. - DEGREE EXAMINATIONS, NOV / DEC 2023

Fifth Semester

Mechanical and Automation Engineering

20MUPC502 - MECHANICS AND CONTROL OF ROBOTIC MANIPULATORS

(Regulations 2020)

Duration: 3 Hours Max. Marks: 100

PART - A $(10 \times 2 = 20 \text{ Marks})$

Answer ALL Questions

1.	Define a 'Robot' according to the robotic terminologies.	Marks, K-Level, CO 2,K1,CO1
2.	How can we improve the safety and reliability of robots?	2,K1,CO1
3.	What is the difference between forward kinematics and inverse kinematics?	2,K1,CO2
4.	What is a SCARA robot?	2,K1,CO2
5.	What is the significance of 'Inverse Kinematics' in robot arm movement?	2,K1,CO3
6.	Define 'Precision' and 'Repeatability' in robotic systems.	2,K1,CO3
7.	Explain the concept of 'Roll, Pitch, and Yaw' angles in robotics.	2,K2,CO4
8.	Describe the role of Lagrange's equation in robot dynamics.	2,K2,CO4
9.	Describe the function of a 'Stepper Motor' in robotic joints.	2,K2,CO5
10.	What is PID control scheme and how is it applied in robotics?	2,K1,CO5

$PART - B (5 \times 13 = 65 Marks)$

Answer ALL Questions

11. a) How do you specify a robot? Is robotics automation? Discuss the ^{13,K2,CO1} different classification systems of robots.

OR

- b) Sketch and explain the four basic robot configurations classified ^{13,K2,CO1} according to the coordinate system.
- 12. a) Derive the forward kinematics of 3 dof 3R robot with steps.

OR

- b) Discuss in detail the Denavit–Hartenberg (DH) Convention for ^{13,K2,CO2} assigning frames to links for identifying the joint link parameters. Analyse in detail about the four DH parameters in Robot Kinematic Modeling.
- 13. a) Explain briefly solvability and existence of solutions in inverse ^{13,K2,CO3} kinematics.

OR

- b) Elaborate on the 'Inverse Kinematics Computation' of a 6-axis robot 13,K2,CO3 with a neat diagram, emphasizing its application in complex tasks.
- 14. a) Describe with a neat sketch the process of deriving the 'Equations of 13,K2,CO4 Motion' for a simple 2 dof manipulator using Lagrange dynamic model.

OR

- b) Describe using a neat sketch the Euler-Lagrange Equation in the 13,K2,CO4 context of robot dynamics and its application in state vector formulation.
- 15. a) Explain the static and dynamic characteristics of Sensors.

 OR
 - b) Explain the robotic vision system and its components with a detailed 13,K2,CO5 diagram.

PART - C $(1 \times 15 = 15 \text{ Marks})$

16. a) Elaborate on the 'Law of Robotics' and various needs and applications 15,K2,CO1 of Robot in industrial scenario.

OR

b) Explain the main Robot anatomy with neat sketch. 15,K2,CO1