Reg. No.					
Question Paper Code12868					
B.E. / B.Tech DEGREE EXAMINATIONS, APRIL / MAY 2024 Fifth Semester Mechanical and Automation engineering					
			20MUPC502 - MECHANICS AND CONTROL OF ROBOTIC MANIPULATORS		
			Regulations - 2020		1 100
Duration: 3 Hours Ma	ax. Ma	rks: 100			
PART - A $(10 \times 2 = 20 \text{ Marks})$ Answer ALL Questions	Marks 2	$S_{Level}^{K-} CO$			
 Define the pitch, yaw and for motion of the food. Differentiate between accuracy and precision 	2	K2 CO1			
 Differentiate between accuracy and precision. List down the peremeters influencing Pohot design and control 	2	$K_{L} CO^{2}$			
4 List out the needs for a kinematic analysis	2	K1 CO2			
5 Define forward kinematics	2	KI CO3			
6 Define inverse kinematics	2	KI CO3			
7. Justify the need of Dynamics in manipulator control.	2	K2 CO4			
8. Define potential energy with its terms.	2	K1 CO4			
9. What is segmentation?	2	K1 CO5			
10. Differentiate an open loop and closed loop control system.	2	K2 CO5			
PART - B (5 × 13 = 65 Marks) Answer ALL Questions					
11. a) Explain the various types of controls adopted in robots.	13	K2 CO1			
OR					
b) With a neat sketch explain the various configurations, its workin work volume, applications.	g, 13	K2 CO1			
12. a) Derive the forward kinematics of SCARA robot using DH convention OR	n. 13	K2 CO2			
b) i) Narrate and explain the DH convention.	7	K2 CO2			
ii) Compare and contrast Forward and inverse kinematics.	6	K2 CO2			
13. a) Derive the inverse kinematics of 6 dof robot with steps.OR	13	K2 CO3			
b) Derive the inverse kinematics of articulated arm robot with steps.	13	K2 CO3			
K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create I		12868			

14. a) Derive the equations for velocity of n dof manipulator using Lagrange ¹³ K² CO4 Euler formulation.

OR

- b) Frame the equations of motion by Lagrange Euler formulation for a 2 ¹³ K² CO4 DOF planar manipulator.
- 15. a) Derive the control equation for a linear second order control system. ¹³ K2 CO5

OR

b) Explain the static and dynamic characteristics of Sensors.

PART - C (1 × 15 = 15 Marks)

16. a) Compare and contrast various joint actuators with its properties and ¹⁵ K² CO5 characteristics.

OR

b) Explain briefly about Machine vision system. 15 K2 CO5