Reg. No.

Question Paper Code 13190

B.E. / B.Tech. - DEGREE EXAMINATIONS, NOV / DEC 2024

Seventh Semester

Mechanical and Automation Engineering 20MUPE702 - SMART FARMING USING AUTOMATION PRINCIPLES

Regulations - 2020

Duration: 3 Hours				00	
PART - A (MCQ) $(20 \times 1 = 20 \text{ Marks})$			K – Level	co	
Answer ALL Questions					
1.	What is the primary goal of smart agriculture?	1	<i>K1</i>	CO1	
	(a) Reduce crop yield (b) Improve soil degradation				
	(c) Optimize resource use and improve yield (d) Increase labor requirements				
2.	Which of the following best describes the origin of soil?	1	<i>K1</i>	CO1	
	(a) It is formed from organic matter only				
	(b) It originates from the breakdown of rocks and minerals				
	(c) Soil is formed through chemical processes alone				
	(d) Soil is made from synthetic materials	,	77.1	001	
3.	Which mineral is commonly found in soil and essential for plant growth?	1	<i>K1</i>	CO1	
	(a) Gold (b) Quartz (c) Iron (d) Diamond	1	V I	COL	
4.	How is soil classified based on texture?	1	<i>K1</i>	CO1	
	(a) Based on color (b) By the mineral content (c) Parties in a fractional partial a (and a filt alon) (d) Paragraphic at least				
5	(c) By the size of mineral particles (sand, silt, clay) (d) By nutrient levels	1	<i>K1</i>	CO2	
5.	Which of the following is an example of an actuator used in smart irrigation systems? (a) Soil moisture sensor (b) Water pump (c) Drone (d) Weather station	1	11.1	CO2	
6.	Telemetry in agriculture primarily refers to:	1	<i>K1</i>	CO2	
0.	(a) Remote control of agricultural machines				
	(b) Real-time data transmission from remote sensors				
	(c) On-site manual data collection				
	(d) Soil testing for nutrient levels				
7.	Which of these devices can control actuators based on sensor feedback in an automa	ated 1	<i>K1</i>	CO2	
	farming system?				
	(a) Thermometer (b) Central control unit or microcontroller (c) GPS system (d) pH me	eter			
8.	Which of the following would be a benefit of using telemetry in agriculture?	1	<i>K1</i>	CO2	
	(a) Increased manual labor requirements (b) Higher risk of crop loss				
	(c) Remote monitoring and control of field conditions (d) Lower crop yields				
9.	Plant health monitoring in agriculture primarily aims to:	1	<i>K1</i>	CO3	
	(a) Increase water usage				
	(b) Detect diseases, nutrient deficiencies, and pest infestations early				
	(c) Reduce crop growth				
10	(d) Increase soil acidity Which technology is often used in plant health monitoring to detect plant stress	and 1	<i>K1</i>	CO3	
10.	disease?	ana			
	(a) Infrared imaging (b) GPS (c) Radio signals (d) Ultrasound				
11.	Which type of sensor is commonly used to monitor leaf moisture in plants?	1	<i>K1</i>	CO3	
	(a) pH sensor (b) Soil temperature sensor (c) Humidity sensor (d) Chlorophyll sensor	sor			
10		1	V 1	CO3	
12.	Chlorophyll sensors are important in plant health monitoring because they: (a) Measure soil compaction. (b) Detect the nitrogen content in leaves.	1	<i>K1</i>	COS	
	(a) Measure soil compaction (b) Detect the nitrogen content in leaves (c) Monitor water levels in the field (d) Increase crop yields directly				
	(a) monitor water levels in the field (a) increase crop yields directly				
K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create					

13.	What	is the main purpose of precision farming technologies?	1	<i>K1</i>	CO4
		crease soil acidity (b) Reduce crop yields			
		ptimize resource use and maximize crop productivity (d) Increase labor requirements			
14.		h of the following technologies is most commonly used for soil analysis in farming?	1	K1	CO4
		rone imaging (b) Soil sensors (c) GPS systems (d) Automated tractors		77.1	<i>a</i> • •
15.		es are used in modern farming primarily for:	1	K1	CO4
		ted planting (b) Aerial imaging and crop health monitoring			
1.0	` /	arvesting crops (d) Fertilizer production	1	<i>K1</i>	CO4
16.		h type of technology helps monitor environmental conditions like temperature,	1	ΚI	C <i>O</i> 4
		dity, and light in farming?			
		oil compaction meter (b) Weather station sensors nermal imaging cameras (d) Plant canopy sensors			
17	` /	nermal imaging cameras (d) Plant canopy sensors benefit of using drones in crop monitoring, as shown in case studies, is:	1	<i>K1</i>	CO5
1/.		eduction in crop yields	•		000
		approved decision-making through real-time data on crop health and growth patterns			
		creased need for manual labor			
	` /	eduction in soil moisture			
18.	` /	ase study of autonomous fruit-picking robots, which of the following challenges was	1	<i>K1</i>	CO5
		ghted?			
	_	igh energy consumption			
	(b) D	ifficulty in distinguishing ripe fruits from unripe ones			
	(c) R	equirement for manual operation			
	` /	mited durability			
19.		anned ground vehicles (UGVs) are especially useful for tasks like:	1	K1	CO5
	` /	ying over fields (b) Soil analysis and automated weeding			
•	` /	anual pesticide spraying (d) Plant breeding	,	1/1	005
20.		on case studies, which of the following technologies in autonomous agriculture	1	K1	CO5
	-	with identifying weeds using machine vision?			
	(a) G	PS (b) Thermal sensors (c) Camera-based vision systems (d) Soil pH sensors			
		$PART - B (10 \times 2 = 20 Marks)$			
		Answer ALL Questions			
21.	What	is the importance of soil pH in agriculture?	2	K1	CO1
22.	. What is the purpose of colorimetry-based detection in soil analysis?		2	K1	CO1
	Differentiate between AC and DC motors in terms of typical applications in agriculture.			K2	CO2
					CO2
	Name one application of solenoid actuators in agricultural machinery.				
		is the importance of measuring leaf health in plant monitoring?	2	<i>K1</i>	CO3
		ribe how accurate crop mapping contribute to efficient resource management?	2	K2	CO3
27.	How	does a micro-irrigation system benefit crop water management?	2	K1	CO4
28.	What	is the role of fencing technology in modern farming?	2	K1	CO4
29.	State	primary purpose of sorting machines in agriculture.	2	<i>K1</i>	CO5
		the types of sensors are commonly used in drones for crop health monitoring.	2	K1	CO5
50.	List	the types of sensors are commonly used in drones for crop hearth monitoring.	_		-
		DART COMMAN			
		PART - C $(6 \times 10 = 60 \text{ Marks})$			
31.	٥)	Answer ALL Questions Discuss the role of soil composition and properties in plant health and productivity.	10	K2	CO1
J1.	a)	Discuss the role of soil composition and properties in plant health and productivity. How do these properties influence agricultural practices?	10	112	201
		OR			
	L)	022	10	K2	CO1
	b)	Explain the different types of sensors used in smart agriculture.	10	114	201

32.	a)	Interpret how Zig-bee technology can be integrated into a precision agriculture system.	10	K2	CO2
		OR			
	b)	Describe the architecture and working principles of a LoRa-based smart farming in water management agricultural system.	10	K2	CO2
33.	a)	Explain the different methods used to measure chlorophyll content in leaves and their importance in assessing plant health.	10	К2	CO3
		OR			
	b)	Describe the principle, methodology, and applications of the SPAD meter in chlorophyll detection.	10	K2	CO3
34.	a)	Discuss the impact of smart water management on water conservation and sustainability.	10	K2	CO4
		OR			
	b)	Summarize the various types of micro-irrigation systems and their applications.	10	K2	CO4
35.	a)	Interpret the role of drones in precision agriculture, including their applications, advantages, and challenges.	10	К3	CO5
		OR			
	b)	Explain the different types of weeding machines used in agriculture and their working principles.	10	K2	CO5
36.	a) i)	Explain how smart water management systems help in mitigating the impact of water scarcity.	5	K2	CO4
	ii)	What challenges do fruit picking robots face in identifying and harvesting fruits?	5	K2	CO5
		OR			
	b) i)	What is the primary objective of using IoT (Internet of Things) in smart water	5	K2	CO4
	0)1)	management?	-		,
	ii)	Describe autonomous unmanned ground vehicles (UGVs) typically used for in agricultural applications.	5	K2	CO5