		Reg. No.											
Г				10				1 1					
L	Question Pa	per Code		14	2772	4							
M.E. / M.Tech DEGREE EXAMINATIONS, APRIL / MAY 2024													
First Semester													
Big Data Analytics 20PRDPC101 - ADVANCED DATA STRUCTURES AND ALCORITHMS													
Regulations - 2020													
Duration: 3 Hours		Guianons	201	_ 0					Ma	x. M	Iarks	: 10	0
	PART - A	$4 (10 \times 2 =$	20]	Mar	·ks)						Mark	K– Leve	со
1. What is TSTO? Write	its types.	M ALL Q	iestr	0115							2	K1	CO1
2. Summarize the import	ance of recur	rence equa	tions	in c	lata	stru	ctur	e.			2	K2	CO1
3. Define Deaps in data s	structure.	1									2	K1	<i>CO2</i>
4. Differentiate Min and	Max heap.										2	K2	<i>CO2</i>
5. Define Splay trees.	5. Define Splay trees.						2	K1	CO3				
6. Analyze the term rotation in AVL tree.						2	<i>K4</i>	CO3					
7. What are k-d trees?					2	K2	<i>CO</i> 4						
8. Define range trees.	8. Define range trees.				2	K2	<i>CO</i> 4						
9. Define List Ranking.						2	K1	<i>CO5</i>					
10. Define Array Max.	10. Define Array Max.							2	K1	CO5			
	PART -]	B $(5 \times 13 =$	65 I	Mar	·ks)								
11	Answ	ver ALL Qu	iesti	ons		41					7	K3	CO1
11. a) 1) Explain the various criteria used for analyzing algorithms.				6	K3								
11) List the properties of various asymptotic notations.				0	КJ	cor							
b) i) Explain the nec algorithms.	essary steps	for analyz	ing	the	effi	cienc	су (of r	ecu	rsive	6	K3	CO1
ii) Design a recu numbers in an a comparisons and	rsive decreas rray with an l time efficien	e by one example an ncy of an al	alg Id de gori	orith etern thm	nm nine	for e the	sor nui	ting nbe	g n er of	rea key	1 7	<i>K4</i>	<i>CO1</i>
12. a) Explain Fibonac	ci Heap by co	onstructing	its s	truc	ture	•					13	K3	<i>CO2</i>
b) Illustrate Leftist	Heaps in deta	ail.									13	K3	CO2
13. a) i) What is Binary binary search tre	Search tree?	Write an	algo	rithr	n to	o add	l a	nod	le ir	nto a	a 6	K3	CO3
K1 – Remember; K2 – Unders	tand; K3 – Appl	ly; K4 – Anal I	vze; I	K5 — .	Eval	uate;	K6 -	– Cr	eate			12	774

	ii)	Explain the various cases for deleting a node from Binary search tree.	7	K3	CO3		
		OR					
	b)	Explain about tries in data structure.	13	K2	CO3		
14.	a)	Summarize the I-dimensional range searching algorithms by using k-d trees and range trees.	13	K3	<i>CO4</i>		
		OR					
	b)	How the data structures are required in Voronoi diagrams? Explain.	13	K3	<i>CO4</i>		
15.	a)	Describe about Flynn's classification.	13	K2	CO5		
OR							
	b)	Explain how data distribution is performed on EREW.	13	K2	CO5		
		$PART - C(1 \times 15 = 15 Marks)$					
16.	a)	Create a red black tree by inserting the following sequence of numbers: 9, 12, 15, 4, 2, 28, 16, 29, 8, 32, 45. OR	15	K3	<i>CO3</i>		
	b) i)	Construct a splay tree for the dataset 6, 29, 15, 16, 10, 2, 45, 38, 9 and	8	K6	CO3		

7 K3 CO3

12774

access 15.

ii) Discuss about AVL tree with example.