Reg. No.																
----------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--

Question Paper Code

12759

M.E./M.Tech - DEGREE EXAMINATIONS, APRIL / MAY 2024

Second Semester

M.E - Big Data Analytics 20PBDPC203 – MACHINE LEARNING TECHNIQUES

Regulations - 2020

]	. Marks: 100					
		PART - A $(10 \times 2 = 20 \text{ Marks})$ Answer ALL Questions	Marks	K- Level CO		
1.	Defin	ne probabilistic models.	2	K1 CO1		
2.	2. Point out applications of machine learning.					
3.	3. Describe probability theory.					
4.	4. Label the set of instances with an example.					
5.	5. List out the characteristic to which the back propagation algorithm is used.					
6.						
	7. Identify the role of Gaussian mixture model in machine learning.					
	8. State unsupervised learning.					
	9. Define undirected graphical model.					
10.	Desc	ribe active learning.	2	K2 CO5		
11.	a)	PART - B (5 × 13 = 65 Marks) Answer ALL Questions Explain in detail the component structure of machine learning. OR	13	K2 CO1		
	b)	Interpret the design of learning system with an example.	13	K2 CO1		
12.	a)	Compare useful perspectives and issues in machine learning in detail. OR	13	K2 CO2		
	b)	Illustrate the Bayes decision theory with an example.	13	K2 CO2		
13.	a)	Discuss about Bayesian logistic regression with an example. OR	13	K3 CO3		
	b) i)	Summarize regression Trees – Pruning.	7	K2 CO3		
	ii)	Discuss about support vector machines.	6	K2 CO3		

14.	a)	Associate the concept of EM Algorithm with a suitable example.	13	K2 CO
		OR		
	b)	Define clustering. Explain K-means algorithm in detail with an example.	13	K2 CO-
15.	a)	Interpret learning in probabilistic graphical models with an example.	13	K3 CO.
		OR		
	b)	Compare the major difference between CRF conditional random field and HMM hidden. Explain both in detail.	13	K3 CO.
		$PART - C (1 \times 15 = 15 Marks)$		
16.	a)	Discuss about ensemble learning algorithm complexity and occam's razor.	15	K2 CO
		OR		
	h)	Illustrate in detail about sampling method of Monte Carlo simulation	15	K2 CO