		Reg. No.							
	Question Paper Code	1265	5						
M.E. / M.Tech DEGREE EXAMINATIONS, APRIL / MAY 2024									
First Semester									
M.E CAD/CAM									
20PCDMA101 - OPTIMIZATION TECHNIQUES IN DESIGN									
Regulations - 2020									
Duration: 3 Hours Max. Marks: 100									
PART - A ($10 \times 2 = 20$ Marks) Answer ALL QuestionsMarks $\frac{K^{-}}{Level}$ CO						со			
1.	Explain the necessary and sufficient condit minimum of a function.		the un	ncon	strai	ned	2	K2	CO1
2.	When is the grid search method preferred in r function?	ninimizing	g an un	ncon	strai	ned	2	K1	CO1
3.	6. How is a parametric constraint handled in the interior penalty functio method?					tion	2	K1	<i>CO2</i>
4.	How can you compute Lagrange multipliers du	ring nume	rical op	otim	izati	on?	2	K1	<i>CO2</i>
5.	Explain the objective function to be used in problem with mixed equality and inequality con		or a m	ninir	nizat	tion	2	K2	СО3
6.	What is a neural network?						2	K1	CO3
7.	List out the types of transverse loading.						2	K2	<i>CO</i> 4
8.	What are the factors considered in torsionally lo	baded shaf	t desig	n?			2	K1	<i>CO</i> 4
9.	List out the function of vibration absorber.						2	K2	<i>CO5</i>
10.	What is meant by degree of freedom? Give exa	mples.					2	Kl	CO5

PART - B $(5 \times 13 = 65 \text{ Marks})$ Answer ALL Questions

Derive an expression for Kuhn - Tucker conditions of nonlinear 13 K3 CO1 11. a) optimization problems.

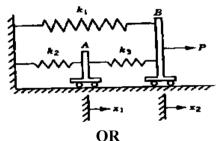
ORe

- Given the function: $f(x) = 2 + (x_1^2 x_2)^2 + x_2^2$. Using three ¹³ iterations of the golden section search method, estimate the minimum point along the line joining the points $(-3, -4)^T$ and $(3, 2)^T$. Restrict K3 CO1 b) the search between the above two points.
- 13 K3 CO2 12. Consider the constrained function: a) Minimize $(x_1^2 + x_2 - 11)^2 + (x_1 + x_2^2 - 7)^2$ subject to $(x_1 - 5)^2 + x_2^2 - 26 \ge 0, x_1, x_2 \ge 0.$

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create

12655

- b) Explain in detail the relation between the Lagrangian function and ¹³ K² CO² sequential quadratic programming method.
- 13. a) Explain the working principles of Genetic Algorithms (GA) using an ¹³ K³ CO³ unconstrained optimization problem as an example. Compare GA with traditional methods.


OR

b) Find the minimum of the following function using simulated ¹³ K3 CO3 annealing:

 $f(X) = 6x_1^2 - 6x_1x_2 + 2x_2^2 - x_1 - 2x_2$ Assume suitable parameters and show detailed calculations for two

iterations.

14. a) Figure below shows two frictionless rigid bodies (carts) A and B ¹³ K² CO⁴ connected by three linear elastic springs having spring constants k₁, k₂ and k₃. The springs are at their natural positions when the applied force P is zero. Find the optimal solution of displacements x₁ and x₂ under the force P by using the principle of minimum potential energy.

- b) Explain in detail about the design optimization of shaft for minimum ¹³ K² CO⁴ cost and weight.
- 15. a) With suitable example explain general procedure for optimization of ¹³ K² CO⁵ path synthesis of a four bar mechanism.

OR

b) Consider the slider crank mechanism and explain its design ¹³ K² CO5 methodology. Identify the parameters to be optimized and propose the techniques to solve the problem.

PART - C $(1 \times 15 = 15 \text{ Marks})$

a) Derive the expression for torsional rigidity of shaft. $15 \quad K3 \quad CO4$

OR

b) A shaft is transmitting 95 kW at 164 rpm. Find a suitable diameter for ¹⁵ K3 CO4 the shaft, if the maximum torque transmitted exceeds the mean by 25%. Take maximum allowable shear stress as 72 MPa.

2

12655

OR