	Reg. No.						
	Question Paper Code 12680						
	M.E. / M.Tech DEGREE EXAMINATIONS, API	RIL	/ N	IAY 2	2024		
	Second Semester						
	M.E CAD / CAM						
	20PCDPC202 - ADVANCED FINITE ELEMENT	Γ AI	NAI	LYSI	5		
	Regulations - 2020						
Du	aration: 3 Hours			Ma	ax. Mai	ks: 10	00
	PART - A (10 × 2 = 20 Marks) Answer ALL Questions				Mari	^{K-} Level C	CO
1.	List the various weighted residual methods.				2	K1 C	01
2.	Compare the Ritz technique with the nodal approximation methods	hod	•		2	K2 C	01
3.	Define two-dimensional scalar variable problem.				2	K1 C	02
4.	Compare CST and LST elements.				2	K2 C	02
5.	Define the term "resonance".				2	K1 C	03
6.	Write the types of vibration.				2	K1 C	03
7.	Define heat transfer.				2	K1 C	04
8.	Write the FE equation for tapered fin.				2	K1 C	04
9.	Draw the graph for stress and strain curve for mild steel.				2	K2 C	05
10.	What is material Non-Linearity?				2	K1 C	05

PART - B (5 × 13 = 65 Marks)

Answer ALL Questions		
11. a) i) Explain the various methods of engineering analysis with suitable illustrations.	8	K2 CO1
ii) Describe the principle of stationary total potential energy.	5	K2 CO1

OR

- b) Solve the differential equation for a physical problem expressed as ¹³ K² CO1 d²y/dx²+100 =0,0≤x≤10 with boundary conditions as y(0)=0andy(10)=0 using (i) Point collocation method (ii) Sub domain collocation method (iii) Least squares method and (iv) Galerkin method.
- 12. a) For a 4-noded rectangular element shown in fig. Infer the temperature at ¹³ K³ CO² the point (2.5, 2.5). The nodal values of the temperatures are T_1 = 100°C, T_2 =60°Cand T_3 =50°Cand T_4 =90°C.Alsodeterminethe80°Cisotherm.

b) Calculate the element stiffness matrix and temperature force vector for ¹³ K³ CO² the plane stress element shown in fig. The element experiences a 20°Cincrease in temperature. Assume $\alpha = 6x10^{-6}$ C. Take E=2x10⁵ N/mm², v=0.25, t= 5mm.

13. a) Determine the eigen values and frequencies for the stepped bar shown in ¹³ K³ CO³ fig. take $E=30X10^{10}$ N/m², sp.weight =8500Kg/m³

- b) Derive the equation of lumped mass matrix for the beam.
- 14. a) For a 3-noded linear triangular element shown in fig. determine the ¹³ K³ CO⁴ isotherm corresponding to 46°C. The temperature at node 1, 2 and 3 are 40°C,52°C,44°C respectively.

- b) Derive the thermal stiffness matrix for 1 D steady state pure heat ¹³ K³ CO⁴ conduction element.
- 15. a) Explain incremental procedure to handle material non-linear problems. ¹³ K2 CO5

OR

b) Explain the iterative procedure and modified iterative procedure for the ¹³ K² CO⁵ analysis of material non-linearity Problems.

PART - C $(1 \times 15 = 15 \text{ Marks})$

16. a) Derive the equation of motion by Hamilton's principle. 15 K3 CO3

OR

b) Determine the natural frequencies of the system shown in fig. 15 K3 CO3

13 K3 CO3