

M.E - Computer Science and Engineering

(Common to Computer Science and Engineering (with Specialization with Networks))

20PCNPC101 - ADVANCED COMPUTER ARCHITECTURE

Regulations - 2020

Du	ration: 3 Hours	Max. Marks: 100		
	PART - A (10 × 2 = 20 Marks) Answer ALL Questions	Marks ^{K–} Level CO		
1.	Define Amdhal's Law.	2	K1 CO1	
2.	Define dependency and list its types.	2	KI COI	
3.	What do you mean by multiple Issue processors?	2	K1 CO2	
4.	How to Enhance Dependability in Memory Systems.	2	K2 CO2	
5.	Describe interconnection network.	2	K2 CO3	
6.	Differentiate Buses from crossbar networks.	2	K2 CO3	
7.	Explain warehouse.	2	K1 CO4	
8.	Differentiate between SMT and CMP.	2	K2 CO4	
9.	Differentiate between scalar and vector processors.	2	K2 CO5	
10.	Describe the Vector functional units.	2	K2 CO5	

PART - B $(5 \times 13 = 65 \text{ Marks})$

Answer ALL Questions

11.	a)	Discuss about Dynamic scheduling using Tomasulo's approach.	13	K2 CO1			
OR							
	b)	Discuss how to reduce Branch cost with dynamic hardware prediction technique.	13	K2 CO1			
12.	a)	Explain the architecture and function of super scalar processor.	13	K2 CO2			
		OR					
	b)	Describe the various cache hit time reduction techniques for improving the cache performance.	13	K2 CO2			
13.	a)	Explain Centralized Shared Memory Architectures.	13	K2 CO3			
OR							
K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create				12694			

	b) i)	Demonstrate the Cache Coherence Performance issues.	7	K2	CO3	
	ii)	Illustrate in detail Snooping Coherence Protocols.	6	K2	CO3	
14.	a)	Explain the SUN CMP architecture in detail and Analyze Intel Multicore Architecture.	13	K2	CO4	
OR						
	b) i)	Explain Google Warehouse-Scale Computer	7	K2	<i>CO</i> 4	
	ii)	Explain the customized and standardize 1AAA container for Google.	6	K2	<i>CO</i> 4	
15.	a) i)	Describe Vector Architecture in detail.	7	K2	CO5	
	ii)	Explain the details of handling Multidimensional Arrays in Vector Architectures	6	K2	<i>CO6</i>	
OR						
	b) i)	Identify the need for SIMD Extension for multimedia.	7	K2	CO5	
	ii)	Explain how to Handle Sparse Matrices in Vector Architectures.	6	K2	<i>CO6</i>	

PART - C (1 × 15 = 15 Marks)

16. a) Prepare the primary components of the instruction set architecture of ¹⁵ K3 CO6 VMIPS and explain the basic vector architecture with neat block diagram.

OR

b) Order the issues in Eliminating Dependent Computations and Finding ¹⁵ K3 CO6 Dependences.