	Reg. No.		
	Question Paper Code12407		
	M.E. / M.Tech DEGREE EXAMINATIONS, NOV / DEC 2023		
	First Semester		
	M.E Communication Systems		
	20PCOEL102 - DIGITAL COMMUNICATION RECEIVERS		
	(Regulations 2020)		
Duration: 3 Hours Max. Mar			
	PART - A (10 × 2 = 20 Marks) Answer ALL Questions		
1.	Define Source encoding.	Marks, K-Level, CO 2,K1,CO1	
2.	What are the characteristics of linear time variant channel?	2,K1,CO1	
3.	Identify decision rule for maximum likelihood detection.	2,K1,CO2	
4.	Distinguish between linear and non – linear modulation techniques.	2,K2,CO2	
5.	List the properties of orthonormal signals.	2,K1,CO3	
6.	Indicate the advantage of diversity technique.	2,K1,CO3	
7.	Tell the relation between the multipath delay spread and coherence bandwidth.	2,K1,CO4	
8.	List the characteristics of nakagami Channel distribution.	2,K1,CO4	
9.	What are the advantages of blind equalizers?	2,K1,CO5	
10.	Indicate the matrix form of LMS algorithm.	2,K1,CO6	

PART - B $(5 \times 13 = 65 \text{ Marks})$

Answer ALL Questions

11. a) Discuss multi amplitude continuous phase FSK signal with ^{13,K2,CO1} mathematical expression.

OR

- b) Explain in detail about the memory-less modulation methods. *13,K2,C01*
- 12. a) Consider the set of signals s1(t). s2(t), s3(t) which are given below. ^{13,K2,CO2} Using GSOP find the set of ortho-normal basis function represents their signals. Also express each of their signals in terms of set of basis function.
 - 1. $S1(t) = 2 \ 0 \le t \le 1$ 2. $S2(t) = -4 \ 0 \le t \le -2$ 3. $S3(t) = 3 \ 0 \le t \le 3$

OR

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create 12407

- b) Describe about the matched filter and discuss how the SNR is *13,K2,CO2* maximized.
- 13. a) Illustrate the performance of square-law detected M=4 orthogonal 13,K2,CO3 signals as a function of diversity.

OR

- b) (i) Discuss RAKE matched filter for processing wideband signals.
 (ii) Summarize the performance of square –law detected FSK.
 6,K2,CO3
- 14. a) Explain probability of a bit error for DPSK with diversity for Rayleigh ^{13,K2,CO4} fading.

OR

- b) Describe the probability of error for soft-decision decoding Linear ^{13,K2,CO4} block codes.
- 15. a) Illustrate the block schematic of a carrier recovery for M-PSK system ^{13,K2,CO5} and timing recovery for an unmodulated carrier.

OR

b) Explain the usage of non-decision directed loop to obtain phase ^{13,K2,CO5} estimate.

PART - C $(1 \times 15 = 15 \text{ Marks})$

16.	a)	Explain in detail the Adaptive Decision feedback Equalizer.	15,K2,CO6
		OR	
	b)	(i) Illustrate Kalman algorithm.	8,K2,CO6
		(ii) Explain linear prediction using lattice filter.	7,K2,CO6