		Reg. No.		
	Question Paper Code	13027		
M.E. / M.Tech DEGREE EXAMINATIONS, NOV / DEC 2024				
Third Semester				
M.E Computer Science and Engineering				
20PCSEL309 - BIO-INSPIRED COMPUTING				
Regulations - 2020				
Duration: 3 Hours Max. Marks: 100				
$PART - A (10 \times 2 = 20 Marks)$			Mark	$K = \frac{K}{L} CO$
1	Answer ALL (What is meant by Optimization algorithms?	Luestions	2	Kl COl
1. 2	List down the two major components of any	Meta heuristic algorit	thms 2	KI COI
2.	Differentiate unimodal and multimodal Sea	rch.	2	K2 CO2
<i>4</i> .	Difference between discrete and continuous	random variables.	2	K2 CO2
5.	How to formulate the fitness function?		2	K1 CO3
6.	List the variants of BAT algorithm.		2	KI CO3
7.	State the advantages of Firefly Algorithm.		2	K1 CO4
8.	State the equation for PSO.		2	K1 CO4
9.	Compare bio-inspired algorithms with tradit	ional algorithms.	2	K2 CO5
10.	What is meant by Multi objective Optimizat	ion?	2	K1 CO5
PART - B (5 × 13 = 65 Marks)				
11	Answer ALL	Questions	7	K2 CO1
11.	i) Illustrate in detail about Gradient desc	ent algorithms	6	K2 CO1
OR				
	b) i) Explain Parameter Tuning in detail.		7	K2 CO1
	ii) Illustrate any two Nature-inspired algo	orithms.	6	K2 CO1
	, , , , , , , , , , , , , , , , , , , ,			
12.	a) Describe in detail Simulated Ann Randomization.	ealing and the impo	ortance of ¹³	K2 CO2
OR IN DE LA COMPANY AND				
	b) Describe how Optimization is done us	ing Markov Chain.	13	K2 CO2
13.	a) Describe about Schema theorem in de	tail.	13	K2 CO3
OR				
	b) Illustrate in detail about Differential E	volution and its algori	thm. 13	K2 CO3
K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create 13027				

14. a) Explain PSO and the Convergence analysis of PSO in detail. 13 K2 CO4

OR

- b) Describe in detail about Ant Colony Optimization towards feature ¹³ K2 CO4 selection.
- 15. a) Build Ground Glass Opacity Nodules Detection and Segmentation ¹³ K3 CO5 using Snake Model.

OR

b) Construct Fine-Tuning Enhanced Probabilistic Neural Networks Using ¹³ K3 CO5 Meta heuristic-driven Optimization.

PART - C $(1 \times 15 = 15 \text{ Marks})$

16. a) Choose an appropriate algorithm and discuss the algorithm for Image ¹⁵ K6 CO6 Contrast Enhancement.

OR

b) Design a Mobile Object Tracking Using Cuckoo Search algorithm. 15 K6 CO6