		Reg. No.									
	Question Pa	per Code	1	3342							
M.E. / M.Tech. -	DEGREE EX	AMINATI	ONS, I	NOV	/ DE	<u>C</u> 2	2024	(JA	N - 20	025)	
		First Sem	ester								
M.E -	COMPUTER	SCIENCE	E AND	ENG	INE	ER	ING				
(Common to M.E Co	mputer Scienc	e and Engi	neering	(with	Spec	ciali	izatio	on i	n Netv	vork	s))
20PCSMA104 / 24	PCSMA104 -	APPLIED	PROB	ABII	JTY	AN	ND S	TA	TIST	ICS	
	Regu	lations – 20	020 / 20	24							
	(Use of Sta	tistical Tab	ole is pe	ermitte	ed)						
Duration: 3 Hours							Μ	ax.	Mark	s: 10	0
		$A (10 \times 2 =$							Marl	K–	, со
1 (ver ALL Qu							2		CO1
1. If $P(X = x) = \begin{cases} \frac{x}{15}, \\ 0, o \end{cases}$	x = 1, 2, 3, 4, 5 therwise	. Determi	the $P\left\{\frac{1}{2}\right\}$	< X ·	$<\frac{5}{2}/$	X	> 1}		2	K2	001
2. Write the probability									2	K1	CO1
3. Calculate the value	of k if $f(x, y)$	k(1 - k) = k(1 - k)	-x)(1 - x)	- y);	0 <	x	< y	<	1 2	K2	<i>CO2</i>
to be the joint densit	y function of ((x, y).	(2	W)	<i>co</i> 2
4. Given the joint pdf	of (X,Y) is	$f(x,y) = \bigg\{$	$e^{-(x+y)}$	', x > , els	> 0, y sewh	v > ere	⁰ . C	Cheo	² k	K2	<i>CO2</i>
whether X and Y are	e independent i	random var	iables?						2	V1	CO3
5. Mention the property	-		(1') .	_					2 2		CO3
6. State the normal equ		ng a straigh	t line y	= a	(+ D)	κ.			2 2		CO4
7. Define Type I and T		4							2 2		CO4
8. List out any two app	lications of F	lest.							2 2		CO5
9. [42 4]	_								2	112	005
If $X = \begin{bmatrix} 52 & 5\\ 52 & 5\\ 48 & 4 \end{bmatrix}$ Cal	culate X .										
						1			2	K2	CO5
10. If $\sum = \begin{bmatrix} 4 & 1 & 2 \\ 1 & 9 & - \\ 2 & -3 & 2 \end{bmatrix}$	$\begin{array}{c c} 3 & \text{Compute th} \\ 5 & \end{array}$	ne standard	deviatio	on ma	trix)	V ²					

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create

PART - B (5 × 16 = 80 Marks) Answer ALL Questions

11. a) i) A discrete random variable X has the probability function given ⁸ K3 CO1 below:

Х	0	1	2	3	4	5	6	7
P(x)	0	k	2k	2k	3k	K^2	$2k^2$	$7k^2+k$

Determine

(i) The value of k.

(ii) $P(x < 6), P(x \ge 6)$.

ii) In a company the monthly break down of a machine is a random 8 K3 CO1 variable with Poisson distribution, with an average 1.8. Compute the probability that the machine for a month (i) without break down (ii) With exactly one break down.

OR

- b) i) In a test of 2000 electric bulbs it was found that the life of a particular 8 K3 CO1 make was normally distributed with an average life of 2040 hours and S.D of 60 hours. Estimate the number of bulbs likely to burn for (i) More than 2150 hours.
 (ii) Less than 1950 hours.
 - ii) Buses arrive at a specified stop at 15 minute intervals starting at 7 a.m. ⁸ K3 CO1 That is they arrive at 7, 7.15, 7.30 and so on. If a passenger arrives at the stop at a random time that is uniformly distributed between 7 and 7.30 a.m., Determine the probability that he waits
 - (i) Less than 5 minutes for a bus.
 - (ii) At least 12 minutes for a bus.
- 12. a) The joint probability function (x, y) is given P(x, y) = k(2x + 3y); x = 0, 1, 2; y = 1, 2, 3.Compute
 - (i) The marginal distributions.
 - (ii) the probability distribution of (x + y)
 - (iii) All conditional probability distributions.

OR

b) The joint pdf of the two dimensional random variable(x, y) is 16 K3 CO2

$$f(x,y) = \begin{cases} 2-x-y; \ 0 \le x \le 1; \ 0 \le y \le 1\\ 0, \quad otherwise \end{cases}$$

Determine the correlation coefficient between x and y.

13. a) Let $x_1, x_2, ..., x_n$ be a random sample from the Poisson distribution ¹⁶ K3 CO3 with parameter λ . Obtain the maximum likelihood estimator of λ .

OR

13342

b) Fit a parabola, by the method of least squares, to the following data. 16 K3 CO3

X	1929	1930	1931	1932	1933	1934	1935
Y	352	356	357	358	360	361	361

- 14. a) i) Before an increase in excise duty on tea, 800 persons out of a sample 8 K3 CO4 of 1000 persons were found to be drinkers. After an increase in duty, 800 people were tea drinkers in a sample of 1200 people. Determine whether there is a significant decrease in the consumption of tea after the increase in excise duty.
 - ii) A simple sample of heights of 6400 English men has a mean of 170 8 K3 CO4 cm and a S.D of 6.4 cm. While a simple sample of heights of 1600 Americans has a mean of 172 cm and a S.D of 6.3 cm. Determine whether the data indicate that Americans are on the average taller than English men.

OR

b) Two researchers A and B adopted different techniques while rating the ¹⁶ K3 CO4 student's level. Using chi-square test, can you say that the techniques adopted by them are significant?

Researchers	Below average	Average	Above average	Genius	Total
A	40	33	25	2	100
В	86	60	44	10	200
Total	126	93	69	12	300

15. a)

Let x be $N_3(\mu, \sum)$ with $\mu' = (2, -3, 1)$ and $\sum = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 3 & 2 \\ 1 & 2 & 2 \end{bmatrix}$.

K3 CO5

16

Compute the distribution of $3x_1 - 2x_2 + x_3$.

OR

b) Compute the principal component of the following matrix ¹⁶ K3 CO5 $\sum = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}.$