D M								
Reg. No.								

Question Paper Code

12734

M.E. / M.Tech. - DEGREE EXAMINATIONS, APRIL / MAY 2024

First Semester

M.E. - Computer Science and Engineering

(Common to Compute Science and Engineering (with Specialization in Networks))

20PCSPC101 - ADVANCED DATA STRUCTURES AND ALGORITHMS

Regulations - 2020

Du	ration	Max. Marks: 10				
PART - A $(10 \times 2 = 20 \text{ Marks})$ Answer ALL Questions					co	
1.	Defi	ne an algorithm.	2	K2	CO1	
2.	Give	an example of recursion.	2	K1	CO1	
3.	3. Differentiate binary tree and binary search tree.					
4.	4. List any four basic operations on trees.					
5.	5. When will you say that a graph is strongly connected?					
6.	6. Define the single source shortest path problem.					
7.	Men	tion the use of dynamic programming.	2	K1	CO4	
8.	State	e the greedy strategy.	2	K1	CO4	
9.	9. Define polynomial time.					
10.	Diffe	erentiate NP hard and NP complete problems.	2	K2	CO5	
		PART - B ($5 \times 13 = 65$ Marks) Answer ALL Questions				
11.	a)	Explain the steps in analyzing an algorithm using insertion sort.	13	3 K2	CO1	
		OR				
	b)	Explain the three asymptotic notations with its definition representation.	and 13	3 K2	CO1	
12.	a)	Illustrate the insertion and deletion operations in a binary search with an example. OR	tree 13	3 K2	CO2	
	1)		1	v v	CO2	
	b)	Explain in detail about the various operations associated with B Ti	rees. 13) K2	C <i>O</i> 2	
13.	a)	Compare breadth first and depth first search algorithms with example.	h an 13	3 K4	СОЗ	
		OR				

	b)	Compare the steps in Kruskals and Prims algorithm in constructing a minimum spanning tree.	13	K4	CO3
14.	a)	Explain the matrix chain multiplication process with an example.	13	K2	CO4
		OR			
	b)	Explain the Huffman codes with examples.	13	K2	CO4
15.	a)	Illustrate the process of performing polynomial time verification.	13	K2	CO5
		OR			
	b)	Explain in detail about Dynamic Programming.	13	K2	CO5
		PART - C $(1 \times 15 = 15 \text{ Marks})$			
16.	a)	Write the non-deterministic sorting algorithm and also analyze its complexity.	15	K2	CO6
		OR			
	h)	Illustrate the proofs for NP-Completeness	15	K2	CO6