	Reg. No.								
	Question Paper Code 13343								
	M.E. / M.Tech DEGREE EXAMINATIONS, NOV / DEC 2024 (JAN - 2025)								
	First Semester								
	M.E - Embedded Systems Technologies								
	(Common to M.E Power Electronics and Derives)								
2	20PESMA102 / 24PESMA102 - APPLIED MATHEMATICS FOR ELECTRICAL								
	ENGINEERS								
	Regulations – 2020 / 2024								
	(Use of Statistical Tables is permitted)								
I	Duration: 3 Hours Max. M	arks	: 100)					
	PART - A (10 × 2 = 20 Marks) Answer ALL Questions	Marks	K– Level	со					
1.	When can Cholesky decomposition be used?	2	K2	COI					
2.	What does the singular value decomposition of a matrix represent?	2	K1	COI					
3.	2	K1	CO2						
4.	2	K2	CO2						
5.	If X is a normal random variable with $\mu = 3, \sigma^2 = 9$, find the probability that X lies between 2 and 5.	2	K3	<i>CO3</i>					
6.	Two coins are tossed. Let A denote the event "at most one head on the two	2	K2	CO3					
	tosses" and let B denote the event "one head and one tail in both tosses". Are A and B independent events?								
7.	Define slack and surplus variables.	2	Kl	<i>CO</i> 4					
8.	What is the difference between transportation problems and Assignment problems?	2	K2	<i>CO4</i>					
9.	Define a periodic function.	2	Kl	CO5					
10.	Define odd and even functions.	2	K1	<i>CO5</i>					
	PART - B (5 × 16 = 80 Marks) Answer ALL Questions								

11. a) Perform LU decomposition of the matrix $\begin{bmatrix} 1 & 1 & -2 \\ -1 & 2 & 1 \\ 0 & 1 & -1 \end{bmatrix}$.

b) Find the singular value decomposition of the matrix $\begin{bmatrix} 0 & 1 & 2 \\ 1 & 0 & 1 \end{bmatrix}$.

12. a) Find the extremal of the functional $J[y] = \int_0^1 (y'^2 + y) dx$ with ¹⁶ K3 CO2 boundary conditions y(0) = 0 and y(1) = 1.

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create

13343

OR

- b) i) By Kantorovich method, solve the Poisson equation K3 CO2 8 $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = -1$ in a square defined by $|x| \le 1$, $|y| \le 1$, where u = 0at $x = \pm 1$ and $y = \pm 1$.
 - Find the Shortest distance between the parabola $y^2 = 4x$ and the line K3 CO2 8 ii) x + v = -5.
- 13. a) i) A discrete random variable X has the following probability K3 CO3 8 distribution.

Х	0	1	2	3	4	5	6	7	8
P(x)	а	3a	5a	7a	9a	11a	13a	15a	17a
Find the value of 'a'									

Find P(X < 3), P(0 < X < 3), $P(X \ge 3)$.

ii) Find moment generating function of Poisson distribution and hence K3 CO3 8 find its mean and variance.

OR

- b) i) In a bolt factory, machines A, B and C produce 25, 35 and 40% of the 8 K3 CO3 total output respectively. Of their outputs, 5, 4 and 2%, respectively, are defective bolts. If a bolt is chosen random from the combined output, what is the probability that it is defective? If a bolt chosen at random is found to be defective, what is the probability that it was produced by C?
 - ii) The time (in hours) required to repair a machine is exponentially K3 CO3 8 distributed with parameter $\lambda = \frac{1}{2}$. (a) What is the probability that the repair time exceeds 2h? (b) What is the conditional probability that a repair takes at least 10h given that its duration exceeds 9h?

14. a) Solve the Linear programming problem using simplex method.

$$16 \quad K3 \quad CO4$$

$$Max \ z = 10x_1 + 15x_2 + 20x_3$$

Subject to,

 $2x_1 + 4x_2 + 6x_3 \le 24$ $3x_1 + 9x_2 + 6x_3 \le 30$

 $x_1, x_2, x_3 \ge 0.$

OR

K3 CO4 16 Solve the Linear programming problem using Big M method. b) Min Z = $2x_1 + 3x_2$

Subject to,

$$\begin{aligned} \mathbf{x}_1 + \mathbf{x}_2 &\geq 6\\ 7\mathbf{x}_1 + \mathbf{x}_2 &\geq 14 \end{aligned}$$

 $x_1, x_2 \ge 0.$

15. a) Find the optimal transportation plan so as to minimize the ¹⁶ K3 CO5 transportation cost.

	Α	В	C	D	Capacity		
Ι	10	30	50	10	7		
II	70	30	40	60	9		
III	40	8	70	20	18		
Requirement	5	8	7	14			
OR							

b) Solve the assignment problem.

Ich	Operator							
JOD	A	В	C	D	E			
Ι	10	12	15	12	8			
II	7	16	14	14	11			
III	13	14	7	9	9			
IV	12	10	11	13	10			
V	8	13	15	11	15			

16 K3 CO5