	R	leg. No.													
	Question Paper Code			12657											
	M.E. / M.Tech DEGREE	EXAMI	NAT	ION	NS,	APR	RIL	/ N	ΛAY	202	24				
	I	First Sem	ester	r											
	M.E - Embedd	led Syste	ms [Гесh	nol	logie	S								
	(Common to M.E	Power E	lectr	onic	s ar	nd D	rive	es)							
	20PESMA102 – APPLIED MATHE	EMATIC	S F	OR I	ELI	ECT	RI	CA	L EI	١GI	NE	ERS	5		
_	Reg	ulations	- 202	20					_	-					
Du	ration: 3 Hours								Ν	lax.	Ma	ırks:	100)	
	PART - A ($10 \times 2 =$	20 N	Aark	KS)					Ι	Marks $\frac{K}{Level}$ CO				
1.	Allswer Define a generalized Figen vector of	ALL Qu rank <i>m</i> f	estic	ons saua	re r	natri	v 4	1			2	K1	CO	1	
2.	Define a Unitary matrix.		ora	squa	101	114111	лл				2	K1	CO	1	
3.	Write the necessary condition for a fu	inctional	to b	e ext	ren	num.					2	K1	CO.	2	
4.	What are the direct methods in variat	ional pro	blen	ıs?							2	K1	CO.	2	
5.	If A and B are events with $P(A) =$	$=\frac{3}{8}, P(B)$	$=\frac{1}{2}$	and	1 P	$(A \cap$	B)	=	$\frac{1}{4}$, fi	nd	2	K2	CO	3	
	$P(A^c \cap B^c)$	0	2						т						
6.	State Baye's theorem.										2	K1	CO.	3	
7.	Define feasible solution.			_							2	KI	CO	4	
8.	What are the disadvantages of Big-M	method	over	·Two	o-pl	hase	me	tho	d?		2	KI	CO CO	4	
9. Define the energy of a signal $f(t)$ over all time.								2	K1	0	3				
10. Write the exponential Fourier series representation of a periodic function							on	2	K2	CO	5				
	$T = \frac{2\pi}{2\pi}$.														
	$f(t)$ with period ω_0														
	PART - B (5 x 16 =	80 N	Aark	(25										
	Answer	ALL Qu	estic	ons											
11.	a) i) Determine the Cholesky decom	position	for t	he m	natri	ix					8	К3	CO	1	
	$\begin{bmatrix} 4 & 2i & -i \end{bmatrix}$														
	$A = \begin{vmatrix} -2i & 10 & 1 \end{vmatrix}.$														
			_	~	_	~					0		~~~		
ii) Find the equation of the straight line that best fits the following									8	K3	CO	1			
	r -3 -2 -1 0	se. 1	2	,	3										
	y 10 15 19 27	28	34	. 4	42										
		OR													

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create

Construct QR decomposition for the matrix b)

- $A = \begin{vmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 \end{vmatrix}.$
- Find the approximate solution by Rayleigh Ritz method of 16 K3 CO2 12. a) differential equation $y'' + x^2y = x$ with y(0) = y(1) = 0.

- On which curve the functional $V[y(x)] = \int_0^{\pi} (y'^2 y^2 + 4y \cos x) dx^{-16}$ K3 CO2 b) is extremal.
- K3 CO3 In a bolt factory machines A, B, C manufacture respectively 25.35 16 13. a) and 40 percent of the total. Of their output 5,4 and 2 percent are defective bolts respectively. A bolt is drawn at random from the product and is found to be defective. What are the probabilities that it was manufactured by machines A, B, C?

OR

- K3 CO3 b) i) The number of monthly breakdowns of a computer is a random variable having a Poisson distribution with mean equal to 1.8. Find the probability that this computer will function for a month (a) without a breakdown (b) with only one breakdown (c) with atleast one breakdown.
 - 8 K3 CO3 ii) The life of a certain kind of electronic device has a mean of 300 hours and standard deviation of 25 hours. Assuming that the life times of the devices follow normal distribution. 1. Find the probability that any one of these devices will have a life time more than 350 hours. 2. What percentage will have life time between 220 and 260 hours?
- 14. Use simplex method to solve the LPP a) Maximize $Z = 4x_1 + 10x_2$ subject to: $2x_1 + x_2 \le 5$; $2x_1 + 5x_2 \le 100$ $2x_1 + 3x_2 \le 90$ and $x_1, x_2 \ge 0$. OR
 - b) Consider the problem of assigning five jobs to five persons. The 16 K3 CO4 assignment costs are given as follows:

	Job									
		1	2	3	4	5				
	Α	8	4	2	6	1				
	B	0	9	5	5	4				
Person	С	3	8	9	2	6				
	D	4	3	1	0	3				
	Ε	9	5	8	9	5				

Determine the optimum assignment schedule.

16 K3 CO4

f(t) = t, -1 < t < 1, f(t+2) = f(t).

ii) Find the exponential Fourier series of the rectified sine wave, 8 K3 CO5 $f(t) = |v(t)| = A |\sin \pi t|, A > 0, 0 < t < 1.$

OR

b) Find an expression for the Fourier coefficients associated with the ¹⁶ K3 CO5 generalized Fourier series arising from the eigenfunctions of $y'' + y' + \lambda y = 0, 0 < x < 3, y(0) = y(3) = 0.$