	—												· · · ·	
		Reg. N	0.											
	Question Paper Code		12252											
	M.E. / M.Tech - DEGREE EXA	MINA	ΔTI	ON	S, I	IO	77	DE	C 2	023	3			
	Third S	Semest	er											
	M.E Industrial S	Safety]	Eng	gine	erir	ıg								
	20PISEL301 – RELIAB (Regulation)	ILITY ons 202	EN 20)	IGI	NE	ER	ING	G						
Duration: 3 Hours				Max. Marks: 100										
	PART - A (10 > Answer AL	< 2 = 20 L Ques) M tior	ark 15	(5)									
1.	Summarize how hazard rate is estimate	d.										N K-L 2,1	Mari Leve K1, (ks, I, CO CO1
2.	Give a short note on reliability.											2,1	K1,0	201
3.	Brief about manual hazard plotting.											2,1	K2,0	CO2
4.	How plotting techniques and maintaina	bility a	re i	nter	rela	ated	?					2,1	K2,0	CO2
5.	Examine reliability block diagram.											2,1	K2,0	CO3
6.	How are reliability and redundancy inte	er relate	ed?									2,1	K1,0	CO3
7.	Define reliability growth model.											2,1	K1,0	CO4
8.	Compare system reliability and compor	nent rel	iabi	ility	•							2,1	K2,0	CO4
9.	Summarize about electric hazards.											2,1	K2,0	CO5
10.	List some characteristics of quantitative	e risk.										2,1	K2,0	CO5

PART - B $(5 \times 13 = 65 \text{ Marks})$

Answer ALL Questions

11.	a)	Illustrate the priori and posteriori probabilities with suitable example.				
		OR				

- 13.K3.CO1 b) Analyze reliability with reference to maintenance engineering. Also point out the importance of failure rate estimation in reliability.
- 13,K4,CO2 12. Ten units were tested at high stress test for up to 250 hours. Six a) failures occurred at 37, 73, 132, 195, 222 and 248 hours. Four units were taken off test without failing at the following run times: 50, 100, 200 and 250 hours. Compute the Cumulative hazard values.

OR

13,K3,CO2 b) Explain the importance of theoretical probability used in empirical methods.

- 13. a) (i) Illustrate about repairable system analysis used in redundancy *7,K3,CO3* system.
 - (ii) Examine about series and parallel systems in reliability prediction 6,K3,CO3 models.

OR

- b) Demonstrate the Baye's formula in reliability assessment perspective ^{13,K3,CO3} and derive the equation.
- 14. a) Compare fault tree and root cause analysis with respect to reliability ^{13,K3,CO4} replacement models.

OR

- b) Deduce the replacement models and concurrent techniques used in *13,K4,CO4* reliability for monitoring.
- 15. a) Illustrate the functions of predictive techniques in industrial safety 13,K4,CO5 management.

OR

b) Examine the characteristics of operational availability in risk reduction. 13,K4,CO5

PART - C $(1 \times 15 = 15 \text{ Marks})$

16. a) Summarize the characteristics and functions of a bath tub curve and 15, K4, CO6 relate them to a concurrent example.

OR

b) Explain with a case study about the parameters involved in risk ^{15,K4,CO6} assessment and risk reduction.