	Reg. No.									
Qu	estion Paper Code	12	840							
M.E. / M.Tech.	- DEGREE EXAMI	NATION	NS, AF	PRII	. / M	AY	2024	ł		
	First Sem	ester								
	Industrial Safety l	Engineer	ring							
20PISMA101 – I	PROBABILITY AN	D STAT	ISTIC	CAL	ME	THC	DDS			
	Regulations -	2020								
Duration: 3 Hours					1	Aax.	Ma	rks	: 100)
	PART - A $(10 \times 2 =$ Answer ALL Qu	20 Mar lestions	ks)				М	arks	K – Level	СО
1. If $P(A) = 0.65, P(B) =$ independent events?	0.4 and $P(A \cap B)$	= 0.24	, can	A	and	В	be	2	K1	<i>CO1</i>
 State any two basic properties. 	erties of a normal curv	e.						2	K1	CO1
3. List out the characteristic	s of good estimators.							2	K2	CO2
4. Define method of maxim	um likelihood estimat	or.						2	K2	CO2
5. Write any four applicatio	ns of t —distribution.							2	K1	CO3
6. Write the test statistic for sample test.	the difference of two	o standar	rd devi	iatio	ns in	a la	rge	2	K2	СО3
7. Define completely random	nized design.							2	<i>K1</i>	<i>CO</i> 4
8. Define 2^2 factorial design								2	<i>K1</i>	<i>CO4</i>
9. Write the additive model	of the time series ana	lysis.						2	<i>K1</i>	<i>CO5</i>
10. Define exponential smoo	thing.							2	K1	CO5

PART - B $(5 \times 16 = 80 \text{ Marks})$

Answer ALL Questions

11.	a) i)	A	discrete	random	variable	👗 has	the	following	g proba	ability	distribution	8	K3	CC)]
-----	-------	---	----------	--------	----------	-------	-----	-----------	---------	---------	--------------	---	----	----	----

	x	0	1	2	3	4	5	6	7	8	
	P(x)	a	3 a	5 a	7a	9 a	11 a	13a	15a	17a	
מ)	Find	the	values	of 🗖	(h)	Find J	r < 0	(<3)	(c) E	ind t	he

(a) Find the values of a, (b) Find P(0 < X < 3) (c) Find the distribution function of X.

ii) A continuous random variable X has the pdf f(x) = K(1 - x), 8 K3 CO1 for x < 1. Find the r^{th} moment about the origin. Hence, find the mean and variance.

OR

b) Derive the moment generating function of uniform distribution and ¹⁶ K3 CO1 also find its mean and variance.

- 12. a) A random sample of x₁, x₂, x₃ & x₄ of size 4 is drawn from a normal ¹⁶ K3 CO2 population unknown mean μ. Consider the following estimators to estimate μ. (i) t₁ = (x₁+x₂+x₃+x₄); (ii) t₂ = (x₁+x₂+x₃)/(3) + x₄; (iii) t₃ = (x₁+2x₂+λx₃)/(3), where λ is such that t₃ is an unbiased estimator. Find the value of λ. Are t₁ & t₂ unbiased? State giving reasons the estimator which is best among t₁, t₂ & t₃.
 - b) The two regression lines are 8x 10y + 66 = 0; 16 K3 CO2 40x - 18y - 214 = 0.

(i) Find the mean values of X and Y.

(ii) Find the correlation co-efficient between X and Y.

13. a) Two researchers adopted different sampling techniques while ¹⁶ K3 CO3 investigating the same group of students to find the number of students falling in different intelligence levels. The results are as follows:

U	0				
Researchers	Below	Average	Above	Genius	Total
	Average		Average		
Х	86	60	44	10	200
Y	40	33	25	2	100
Total	126	93	69	12	300

Would you say that the sampling techniques adopted by the two researchers are independent?

OR

- b) i) In a random sample of 1000 people in Mumbai city, 540 are rice eaters 8 K3 CO3 and rests are wheat eaters. Can we assume that both rice and wheat eaters are equally popular in this state at **1%** level of significance?
 - ii) In a random sample of 1000 people from city A, 400 are found to be 8 K3 CO3 consumers of wheat. In a sample of 800 from city B, 400 are found to be consumers of wheat. Does the data give a significant difference between the two cities as far as the proportion of wheat consumers is concerned?
- 14. a) The following data represent the number of units of production per day ¹⁶ K3 CO4 turned out by different workers using 4 different types of machines:

Workers	Machine Type							
	A	В	С	D				
1	44	38	47	36				
2	46	40	52	43				
3	34	36	44	32				
4	43	38	46	33				
5	38	42	49	39				

(a) Test whether 5 workers are differ with respect to mean productivity?

(b) Test whether the mean productivity is the same for the four different machine types.

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create

OR

b) Setup the analysis of variance for the following results of a Latin ¹⁶ K3 CO4 Square Design. Use $\alpha = 0.01$ level of significance.

А	С	В	D
12	19	10	8
С	В	D	А
18	12	6	7
В	D	А	С
22	10	5	21
D	А	С	В
12	7	27	17

15. a) The price of a commodity during 1980-1983 were as follows:

16 K3 CO5

12840

Years	JanMar.	AprJune	JulSep.	OctDec.
1980	321	348	348	348
1981	327	351	354	348
1982	342	359	381	345
1983	364	390	401	385

Compute the seasonal indices by the method of simple average.

OR

b) The prices of commodity during 1993 to 1998 are given below. Fit a ¹⁶ K³ CO⁵ parabola $Y = a + bX + CX^2$ to these data. Calculate the trend values. Estimate the price of the commodity for the year 1999.

Years	1993	1994	1995	1996	1997	1998
Price	100	107	128	140	181	192