			<u> </u>
Reg. No.			
Question Paper Code 12779			
M.E./M.Tech - DEGREE EXAMINATIONS, APRIL / MAY 2024			
Second Semester			
M.E - Industrial Safety Engineering			
20PISPC204 – SAFETY IN CHEMICAL INDUSTRIES			
Regulations - 2020			
Duration: 3 Hours Max. Marks: 100			
$\mathbf{D} \mathbf{A} \mathbf{D} \mathbf{T} = \mathbf{A} (10 + 2 - 20 \mathbf{M}_{\text{archer}})$			
Answer ALL Questions	Marks	Level	СО
1. Define the colour codes for safety in chemical industries.	2	K1	CO1
2. Summarize the functions of a heat exchanger.	2	K2	CO1
3. List the advantages of NDT.	2	K1	<i>CO2</i>
4. Discuss the importance of a plant monitoring system.	2	K2	<i>CO2</i>
5. List any four hazards in a refinery plant.	2	K1	CO3
6. Summarize the expected hazards in a chemical industry.	2	K2	СО3
7. Write short notes on pre-commissioning.	2	K1	<i>CO4</i>
8. Define performance monitoring.	2	K1	<i>CO4</i>
9. Discuss the need for flame arrestors.	2	K2	CO5
10. Describe secondary containment in chemical plants.	2	K2	CO5
PART - B (5 × 13 = 65 Marks)			
Answer ALL Questions	12	VJ	<i>CO1</i>
11. a) i) Interpret methods to ensure reactor safety with a neat sketch.	13	K2	CO1
OR	7	VJ	<i>CO1</i>
b) i) Explain conceptual design and its elements.	7		CO1
ii) Discuss the requirements for a good conceptual design.	6	K2	<i>CO1</i>
12. a) Discuss the various procedures to be followed to ensure safe commissioning activities.OR	13	K2	<i>CO2</i>
	13	K?	<i>CO2</i>
b) Illustrate a check list for a plant inspection and discuss.	15	K2	02
13. a) Examine in detail Operating discipline and Operating procedure.OR	13	K3	CO3
b) Demonstrate the importance of hand over and permit system with a	13	K3	CO3
K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create	12779		

case study.

14. a) Explain various types of inspections to be carried out in the ¹³ K² CO4 commissioning phase.

OR

- b) Discuss the equipment system activities in detail. 13 K2 CO4
- 15. a) Explain in detail about fire prevention and protection in Chemical ¹³ K2 CO5 Industries.

OR

b) Discuss various codes and standards for storing and transit of 13 K2 CO5 chemicals.

PART - C $(1 \times 15 = 15 \text{ Marks})$

16. a) Explain the various precautions and facilities to be considered and ¹⁵ K2 CO6 provided in LPG storage with a layout.

OR

b) Summarize in detail the various NDT techniques to be followed 15 K2 CO6 during the testing of high pressure piping systems.