Reg. No.	
Question Paper Code12990	
M.E./M.Tech - DEGREE EXAMINATIONS, NOV/D	DEC 2024
Second Semester	
Industrial Safety Engineering	
20PISPC205 – MACHINE LEARNING AND ARTIFICIAL INT INDUSTRIAL SAFETY Regulation - 2020	ELLIGENCE FOR
Duration: 3 Hours	Max. Marks: 100
PART - A (10 × 2 = 20 Marks) Answer ALL Questions 1. Define Artificial Intelligence.	Marks ^{K–} CO Level CO 2 K1 CO1
 Define Artificial interligence. List the steps in performing a state-space search. 	2 K1 CO1
 Differentiate prepositional & predicate logic. 	2 K2 CO2
4. Mention the frame manipulation primitives.	2 K1 CO2
5. Define Non monotonic reasoning.	2 K1 CO3
6. Brief on Bayesian networks with an example.	2 K1 CO3
7. Mention the role of semantic analysis in NLP.	2 K2 CO4
8. List any two NLP systems.	2 K1 CO4
9. Define Inductive Bias.	2 K1 CO5
10. List the characteristic features of an expert system.	2 K1 CO5
PART - B (5 × 13 = 65 Marks) Answer ALL Questions	
11. a) Differentiate on the classification and regression in machine le OR	earning. 13 K2 CO1
b) Explain in detail the properties of task environments.	13 K2 CO1
 12. a) Explain in detail the following with examples (i) Recursive Best First Search (RBFS) (ii) Heuristic Functions 	13 K2 CO2
OR	
b) Discuss the process of the Supervised Learning Model.	13 K2 CO2
13. a) Elaborate the process of feature subset selection in detail.OR	13 K2 CO3

- b) With an example describe the steps involved in the knowledge ¹³ K² CO3 engineering process.
- 14. a) Explain the process of inducing decision trees from examples. 13 K3 CO4

OR

- b) Detail the method of assessing the performance of a learning algorithm. ¹³ K3 CO4 Draw a learning curve for the decision tree algorithm.
- 15. a) Discuss in detail about ambiguity and disambiguation.

OR

b) Draw the schematic of a machine translation and explain for an ¹³ K² CO5 example problem.

$PART - C (1 \times 15 = 15 Marks)$

16. a) List the various architectures of Neural Networks. Describe each of ¹⁵ K3 CO6 them in detail.

OR

b) Explain the application of machine learning tools in an industrial safety ¹⁵ K3 CO6 environment with illustrations.