	Reg. No.			
	Question Paper Code12725			
M.E. / M.Tech DEGREE EXAMINATIONS, APRIL / MAY 2024				
Second Semester				
M.E Power Electronics and Drives				
20PPEEL202 - SOFT COMPUTING TECHNIQUE				
Regulations - 2020				
Ι	Duration: 3 Hours Max. Marks: 100			
	PART - A $(10 \times 2 = 20 \text{ Marks})$ Answer ALL Questions	Marks	K– Level	со
1.	Compare soft computing vs. hard computing.	2	K2	CO1
2.	Draw the basic model of Adaline network and Madaline network.	2	K1	CO1
3.	Name some applications of competitive learning network.	2	K1	<i>CO2</i>
4.	Justify why Artificial Neural Network is called adaptive system during training.	2	K1	<i>CO2</i>
5.	State fuzzy inference system.	2	K1	CO3
6.	Mention the three properties for matrix relations that define fuzzy equivalence relation	2	K1	CO3
7.	Specify the role of fitness function in Genetic Algorithm.	2	K1	<i>CO4</i>
8.	In what way if-then rules are used for multiobjective optimization?	2	K1	<i>CO4</i>
9.	Differentiate between Perceptron and SVM.	2	K2	CO5
10.	List few applications of hybrid fuzzy Genetic algorithm systems.	2	K1	CO5

PART - B $(5 \times 13 = 65 \text{ Marks})$

Answer ALL Questions

11. a) Explain with a neat diagram the neural network architecture of ¹³ K² CO1 multilayer feed forward network.

OR

- b) Illustrate the architecture of Perceptron and write the step by step ¹³ K² CO1 procedure for training the perceptron with necessary flowchart.
- 12. a) i) Describe the steps involved to solve any one of the optimization 7 K4 CO2 problems using Hopfield neural network
 - ii) Draw and explain the structure of Boltzmann machine 6 K2 CO2

OR

b) Explain the training algorithm used in ART network. 13 K4 CO2

12725

13. a) Calculate (i) Complement (ii) Union (iii) Intersection (iv) Difference ¹³ K2 CO3 (v) De Morgan's Principles for the two given fuzzy sets.

$$\underline{A} = \left\{ \frac{1}{2} + \frac{0.3}{4} + \frac{0.5}{6} + \frac{0.2}{8} \right\} \quad \underline{B} = \left\{ \frac{0.5}{2} + \frac{0.4}{4} + \frac{0.1}{6} + \frac{1}{8} \right\}$$
OR

- b) Explain with neat sketch the Architecture of fuzzy logic controller. 13 K2 CO3
- 14. a) Summarize with suitable examples the various types of crossover ¹³ K² CO⁴ techniques used in the genetic algorithm process

OR

- b) i) Describe the basic steps of Genetic Algorithm used for solving 7 K2 CO4 optimization techniques
 - ii) Compare the features of Genetic Algorithm with other optimization 6 K2 CO4 techniques.
- 15. a) With suitable block diagram, explain the principle involved in a liquid ¹³ K2 CO5 level controller using neuro fuzzy technique.

OR

b) With a neat flowchart, explain the algorithm of particle swarm ¹³ K2 CO5 optimization.

PART - C $(1 \times 15 = 15 \text{ Marks})$

16. a) Demonstrate in detail about Roulette-Wheel selection and random ¹⁵ K3 CO4 selection.

OR

b) For choice of your application, design and train the SVM network with ¹⁵ K3 CO5 different kernels and classify them.