		Reg. No.												
Question Paper Code 12803														
	M.E. / M.Tech DEC	GREE EXAMI	NA	ΓΙΟ	NS,	AP	RIL	. / N	ЛАҮ	202	24			
		Second Sec	mes	ter										
	M.E. -	Power Electro	nics	and	l Di	rives	5							
	20PPEEL216 - WI	ND ENERGY	CO	NVI	ERS	SION	N SY	(ST	EM	S				
		Regulations	- 20	20										
Duration: 3 Hours Ma											Ma	rks:	100	
PART - A $(10 \times 2 = 20 \text{ Marks})$ Answer ALL Questions											Marks ^K – CO Level			
1.	L. List the factors to be considered while selecting wind power generation.											Kl	<i>CO1</i>	
2.	. What is the power contained in wind?											K1	C01	
3.	What are lift and drag coefficients?										2	Kl	<i>CO2</i>	
4.	Show Cp Vs λ curves for various types of wind turbines.										2	K2	<i>CO2</i>	
5.	List the merits and limitations of fixed speed generation system.										2	K1	CO3	
6.	Outline the performance of squirrel cage induction generator.									2	K2	CO3		
7.	What is the advantage of variable speed WECS?										2	K1	<i>CO4</i>	
8.	Relate the use of PWM rectifier in variable speed synchronous generator.										2	K2	<i>CO4</i>	
9.	What is voltage dip and voltage swell?										2	<i>K1</i>	CO5	
10.	0. Show the ramp rate limit of wind power output.											K2	CO5	
	PAR A	T - B (5 × 13 = Answer ALL Qu	65 iesti	Mar ons	·ks)									
11.	a) Explain the construction block diagram.	of wind energy	v co1	ivers	sion	i syst	tem	wit	h a r	neat	13	K2	CO1	
		OR												

- b) Explain the aerodynamics of wind rotor using blade element theory. 13 K2 CO1
- 12. a) What are the various designs of rotors used for HAWT with its merits ¹³ K² CO² and demerits? Discuss.

OR

- b) Explain the various features of pitch controlled WPP and stall ¹³ K2 CO2 controlled WPP.
- 13. a) Explain about the constant voltage, constant frequency wind energy ¹³ K² CO³ generation system.
- K1 Remember; K2 Understand; K3 Apply; K4 Analyze; K5 Evaluate; K6 Create 12803

OR

- b) Explain the wind generator modeling for transient state analysis. 13 K2 CO3
- 14. a) Explain variable-speed WECS with doubly fed induction generator. 13 K2 CO4

OR

- b) Explain the variable speed variable frequency systems and define the ¹³ K² CO⁴ function of each block in it.
- 15. a) Explain the significance of Low Voltage Ride Through wind turbine ¹³ K2 CO5 connectivity in the grid.

OR

b) Explain the enhanced dynamic behavior of grid connected wind farms ¹³ K² CO5 in load participation and frequency regulation.

PART - C $(1 \times 15 = 15 \text{ Marks})$

- 16. a) i) Illustrate the importance of Torque Vs Speed curve of squirrel cage 7 K2 CO4 induction generator in WECS.
 - ii) Explain the wind turbine grid connectivity requirements. 8 K2 CO5

OR

- b) i) Explain the mathematical modeling of PMSG with necessary 8 K2 CO4 equations.
 - ii) Briefly explain the application of wind turbines used for irrigation to 7 K2 CO5 pump water from the source and supply to the crops.