Reg. No.

Question Paper Code

13005

M.E. / M.Tech. - DEGREE EXAMINATIONS, NOV / DEC 2024

Third Semester

M.E. - Power Electronics and Drives

20PPEEL301 - POWER ELECTRONIC APPLICATION TO POWER SYSTEM

Regulations – 2020

Regulations – 2020	
Duration: 3 Hours	Max. Marks: 100
PART - A $(10 \times 2 = 20 \text{ Marks})$ Answer ALL Questions	Marks K – CO
1. List the topologies used in HVDC system.	2 K1 CO1
2. Show the values of PPR, PIV of 12 pulse converter.	2 K2 CO1
3. Outline the benefits of 'Sunshine Projects' in Japan.	2 K2 CO2
4. Draw the block diagram of standalone PV system.	2 K2 CO2
5. What is the need of converters in HVDC?	2 K1 CO3
6. Compare constant α control and inverse cosine control.	2 K2 CO3
7. Interpret the most common techniques for mitigating flicke systems.	r in HVDC ² K2 CO4
8. What are the common types of faults in wind turbine systems?	2 K1 CO4
9. Illustrate the role of power converters in renewable energy system	ms. 2 K2 CO5
10. Classify the various power converters used in wind turbines.	2 K2 CO5
PART - B (5 × 13 = 65 Marks) Answer ALL Questions 11. a) Explain the effects of Harmonics in power system du converters.	ie to power 13 K2 CO1
OR	
b) Derive the expression for PIV, peak -to- peak ripple, valve rating for 12 pulse converter.	volt ampere 13 K2 CO1
12. a) Analyze the protection methods employed for PV system i	n detail. 13 K4 CO2
b) Examine the procedure to estimate the solar insolation data	a. 13 K4 CO2
13. a) Explain the control characteristics of converter in HVDC.	13 K2 CO3
OR	
b) Summarize about the following (a) Constant Alpha control (b) Inverse cosine co	ontrol.
K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6	6 – Create 13005

14. a) Identify the common types of faults that occur in wind turbine ¹³ K³ CO⁴ systems, and how do these faults impact the overall performance and reliability of the system?

OR

- b) Select the key challenges in harmonizing international standards for 13 K3 CO4 grid integration of renewable energy in detail.
- 15. a) Select the best practices for ensuring the reliability and efficiency of 13 K3 CO5 protection schemes in HVDC systems.

OR

b) Identify the role of FACTS controllers in improving fault tolerance in 13 K3 CO5 HVDC systems.

PART - C $(1 \times 15 = 15 \text{ Marks})$

- 16. a) i) Explain the harmonic sources from commercial loads and residential 8 K2 CO4 loads in detail.
 - ii) Choose the main challenges in integrating power converter-based ⁷ K3 CO5 renewable energy sources into the existing power grid, and how can these challenges be addressed?

OR

- b) i) Summarize the impact of environmental factors, such as extreme 8 K2 CO4 weather conditions; contribute to faults in wind systems.
 - ii) Making use of simulation tools to test and validate protection ⁷ K³ CO⁵ mechanisms for power converters in HVDC system in detail.