	Reg. No.	
	Question Paper Code12368	
M.E. / M.Tech DEGREE EXAMINATIONS, NOV / DEC 2023 First Semester		
M.EPower Electronics and Drives		
20PPEPC103 - ANALYSIS AND DESIGN OF POWER CONVERTERS		
(Regulations 2020)		
Dura	ation: 3 Hours Max. Mark	cs: 100
PART - A (10 × 2 = 20 Marks) Answer ALL Questions		
1.	What is the inversion mode of converters?	Marks, K-Level, CO 2,K1,CO1
2.	What is meant by the non-circulating mode of operation of a dual converter?	2,K1,CO1
3.	Draw the sketch of Battery Charger?	2,K1,CO2
4.	List any two applications of SMPS.	2,K1,CO2
5.	Mention the soft magnetic materials.	2,K1,CO3
6.	Define the filling factor.	2,K1,CO3
7.	Define the term switching loss.	2,K1,CO4
8.	Draw the high-frequency equivalent circuit of zero- voltage transition PWM converters.	2,K1,CO4
9.	Define On - Off control of AC voltage regulators.	2,K1,CO5
10.	Define matrix converter.	2,K1,CO5

PART - B ($5 \times 13 = 65$ Marks)

Answer ALL Questions

11. a) Explain the operation of a single phase full bridge converter with R-L ^{13,K2,CO1} load for continuous and discontinuous load current.

OR

- b) Explain the pulse width modulation technique for power factor ^{13,K2,CO1} improvement.
- 12. a) Draw and explain the block diagram of SMPS and mention its ^{13,K2,CO2} advantages over linear power supply.

OR

b) Discuss the basic operation of a Flyback converter showing various ^{13,K2,CO2} modes and draw the steady state waveforms of discontinuous mode operation.

13. a) Illustrate the optimum flux density unlimited by saturation in 13, K2, CO3 transformer design.

OR

- b) Analyze and design of methodology for inductor design. *13,K2,C03*
- 14. a) Summarize the basic principles of soft switching and hard switching. 13,K2,CO4

OR

- b) Explain in detail the Zero-Current Transition PWM Converters and 13,K2,CO4 sketch the waveforms.
- a) (i) Derive the RMS output voltage for a single phase half controlled ac ^{7,K2,CO5} voltage controller with R-load.
 (ii) Draw the voltage and current waveform with R load and R-L load ^{6,K2,CO5} and justify the shape of the waveform.

OR

b) Explain with circuit diagram and waveform the principle of phase ^{13,K2,CO5} control of single phase controller with RL load and obtain expression for voltage and power factor.

PART - C $(1 \times 15 = 15 \text{ Marks})$

16. a) Explain the working of SEPIC Converter in detail with necessary ^{15,K2,CO2} waveforms and equations.

OR

b) Design a transformer single-capacitor phase-controlled series-resonant ^{15,K2,CO4} converter with a transformer center - tapped rectifier. The specifications are VI = 270 to 300 V, Vo = 28 V, and RL_{min} = 10 Ω . Assume the resonant frequency $f_0 = 150$ kHz, the inverter efficiency $\eta_I = 94\%$, and the rectifier efficiency $\eta_R = 95\%$. Draw the efficiency of the designed converter η as a function of load resistance RL.