	Reg	. No.												
	Question Paper Code		12780											
M.E. / M.Tech DEGREE EXAMINATIONS, APRIL / MAY 2024														
First Semester														
M.E - Power Electronics and Drives														
20PPEPC103 - ANALYSIS AND DESIGN OF POWER CONVERTERS														
	Regula	ations	- 202	20										
Du	ration: 3 Hours								l	Max	. Ma	arks:	10	0
PART - A (10 × 2 = 20 Marks) Answer ALL Questions					Mark	K– KS Leve	, C	0						
1.		List out the different types of controlled rectifier.									2	K1	CC	01
2.								K1	CC	01				
3.	Compare the buck boost converter and cuk converter.									2	K2	CC)2	
4.	Label the control characteristics of buck converter.									2	K2	CC	02	
5.	Categorize the different types of transformer cores.								2	K2	CC)3		
6.	Suggest the core loss of inductor design										2	K2	CC)3
7.	Classify the resonant converter.										2	K2	CC	04
8.	State the advantage of ZVS.										2	K1	CC	04
9.	Sketch the circuit diagram of single pha	se to s	ingl	e ph	ase	сус	clocc	onve	erter		2	K1	CC)5
10.	Define the matrix converter.										2	K1	CC	75

PART - B $(5 \times 13 = 65 \text{ Marks})$

Answer ALL Questions

a) Examine the principle of operation for a single phase full converter ¹³ K² CO1 with R-L load and no freewheeling diode. Sketch the circuit diagram and draw the waveforms for source voltage, output voltage, load current and source current assuming a large inductor and no ripple in the output current. Derive the expression for RMS output voltage.

OR

- b) With necessary circuit and waveforms, explain the principle of ¹³ K² CO1 operation of three phases fully controlled bridge converter feeding RL load and also write the expression for the average output voltage.
- 12. a) Estimate the principle of operation of a buck converter with circuit ¹³ K3 CO2 diagram showing the various modes. Derive the expression for output voltage and continuous inductor current and capacitor current.

OR

12780

b) i) Evaluate the fly back converter and draw the steady state waveforms	10	K3 CO2
of discontinuous mode operation.		
	2	V2 CO2

- ii) Compare fly back converter with forward converter. 3 K3 CO2
- 13. a) Design an inductor for a buck converter with suitable specifications. ¹³ K3 CO3

OR

- b) Evaluate the selection of input and output filter capacitors. 13 K3 CO3
- 14. a) Summarize the operation of series loaded resonant converter and ¹³ K2 CO4 parallel loaded resonant converter with suitable sketches and waveform.

OR

- b) Evaluate the Buck-Boost ZCS Quasi Resonant DC-DC Converter with ¹³ K² CO⁴ its suitable circuit and characteristics.
- 15. a) Elucidate with circuit diagram and waveform the principle of phase ¹³ K² CO⁵ control of single phase controller with RL load and obtain expression for voltage and power factor.

OR

b) Illustrate the operating principle of three phase to single phase ¹³ K² CO5 cycloconverter with appropriate circuit and waveform.

PART - C $(1 \times 15 = 15 \text{ Marks})$

16. a) With neat sketches, explicate the operation of single phase dual ¹⁵ K⁵ CO1 converter in circulating current mode with its suitable waveform.

OR

b) Illustrate three phase to three phase cyclo converter with relevant ¹⁵ K4 CO5 circuit arrangements. Draw and explain the control circuit block diagram for a cyclo converter with non- circulating current mode.