Question Paper Code 12817

M.E. / M.Tech. - DEGREE EXAMINATIONS, APRIL / MAY 2024

First Semester

M.E - Power Electronics and Drives 20PPEPC104 - ANALYSIS AND DESIGN OF INVERTERS

Regulations - 2020

		Regulations - 2020			
Duration: 3 Hours Max. Marks: 100					
PART - A $(10 \times 2 = 20 \text{ Marks})$ Answer ALL Questions			Marks K- Level CO		
1.	Def	ine commutation. How they are generally classified?.	2	<i>K1</i>	CO1
2.	Wh	y IGBT is preferred for inverters?	2	<i>K1</i>	CO1
3.	Define amplitude and frequency modulation index.			<i>K1</i>	CO2
4.	Def	ine PWM inverter	2	<i>K1</i>	CO2
5.	Wh	at is a six step thyristor Inverter?	2	<i>K1</i>	CO3
6.	Wh	at are the advantages of CSI when compared to VSI?	2	<i>K1</i>	CO3
7.	Me	ntion the disadvantages of a modified diode-clamped multilevel inverter.	2	<i>K1</i>	CO4
8.	List	out the advantages and disadvantages of cascaded inverters.	2	<i>K1</i>	CO4
9.	Wh	at are the advantages of resonant inverters?	2	K1	CO5
10.	Me	ntion the advantages and limitations of class E resonant inverter.	2	<i>K1</i>	CO5
11.	a)	PART - B (5 × 13 = 65 Marks) Answer ALL Questions Describe the operation of half phase full bridge inverter with RL Load and derive the expression for fundamental component of RMS output voltage.		K2	CO1
OR					
	b)	Explain the modified Mc-Murray full bridge inverter with appropriate voltage and current waveforms. Derive suitable expressions for commutating components of L and C.		K2	CO1
12.	a)	Explain the principle of operation of three phase operating at 180° conduction mode with star connected load, with neat waveforms and circuit diagram.	13	К2	CO2
		OR			
	b)	A 3ϕ bridge inverter delivers power to a resistive load from a 450V dc source. For a star connected load of 10Ω /phase, determine for both 180° and 120° mode operation. (i) RMS value of load current. (ii) RMS value of thyristor current.		K2	CO2

(iii) Load power.

13. a) Explain the operation of three phase auto sequentially commutated 13 K2 CO3 current source inverter in detail. ORb) A single phase bridge inverter fed from 230V dc is connected to RL 13 K2 CO3 load with R= 20 Ohm and L= 0.06H. Determine power delivered to laid in case inverter is operating at 50Hz with (i) Square wave output. (ii) Quasi square wave output with on period of 0.5 Two Symmetrically spaced pulses per half cycle on period of 0.5 of cvcle. 14. a) Explain the different waveforms of diode-clamped multilevel inverter 13 K2 CO4 with necessary equations. OR b) Explain the operation of a flying capacitor multilevel inverter with 13 K2 CO4 necessary details and also discuss its features, advantages and disadvantages. 15. a) Describe the operation of Class E resonant inverter with neat wave 13 K2 CO5 forms. OR b) Explain the step by step procedure for the design of zero-voltage 13 K2 CO5 switching resonant converter.

PART - C $(1 \times 15 = 15 \text{ Marks})$

16. a) Discuss in detail the different PWM techniques used for single phase 15 K2 CO4 multilevel inverters.

OR

b) Explain the principle of series resonant inverter.

15 K2 CO5