Reg. No).									
on Papar Cada		13	22/	Q						

Question Paper Code 1

B.E. / B.Tech. - DEGREE EXAMINATIONS, NOV / DEC 2024 (JAN - 2025)

First Semester

Civil Engineering

(Common to All Branches)

24BSCY101 - ENGINEERING CHEMISTRY

Regulations - 2024

Du	ration: 3 Hours		Max. M	larks:	100
	PART - A (MCQ) $(20 \times$	1 = 20 Marks	Marks	<i>K</i> –	CO
	Answer ALL Que	*		Level	
1.	The polymer which is used for making non-stick ut		1	<i>K1</i>	CO1
	(a) Polyurethane (b) Bakelite (c) Tef				
2.	is the main characteristic of condensation poly	merization?	1	<i>K1</i>	CO1
	(a) No small molecules are released during the reac	tion.			
	(b) It involves the formation of a cyclic structure.				
	(c) Small molecules (e.g., water) are released as by-	-products.			
	(d) It can only occur with ionic monomers.				
3.			1	<i>K1</i>	CO1
	(a) Polyethylene terephthalate	(b) Polyamide			
	(c) Polyvinyl chloride	(d) Polypropylene			
4.	Amount of electricity passed during electrolysis is i		1	<i>K1</i>	CO2
	(a) Conductometer (b) Vo	oltmeter			
	(c) Galvanometer (d) Co	oulometer			
5.	Spontaneity of redox reaction can be predicted	from the emf (E°) value of th	ne 1	<i>K1</i>	CO2
	complete cell reaction. If the E° of the cell is positive	ve			
	(a) the reaction is spontaneous (b)	the reaction is not feasible			
	(c) both (d)	None of the above			
6.	One of the major disadvantage of Sodium-ion batte	ry is	1	<i>K1</i>	CO2
	(a) Fast charging	(b) Low-cost			
	(c) Reversibility	(d) Low energy density			
7.	Which of the following is true for a photochemical	reaction?	1	<i>K1</i>	CO3
	(a) It occurs only in the presence of heat.				
	(b) It requires light to initiate the reaction.				
	(c) It can only occur in the absence of oxygen.				
	(d) It only occurs in solid-state				
8.	In a photochemical reaction, the excited state of a n	nolecule is:	1	<i>K1</i>	CO3
	(a) The state in which the molecule is most stable.				
	(b) A higher energy state than the ground state.				
	(c) The same energy as the ground state.				
	(d) Always a singlet state				
9.	Which of the following light sources is commonly to	used in UV Visible	1	<i>K1</i>	CO3
	spectrophotometers?				
	(a) Deuterium lamp (for UV range) (b) To	ungsten lamp (for visible range)			
	• • • • • • • • • • • • • • • • • • • •	oth A and B			
10.	is an "adiabatic process"?		1	<i>K1</i>	CO4
	(a) A process in which temperature remains constar	ıt.			
	(b) A process in which volume remains constant.				
	(c) A process in which no heat is transferred to or fi	com the system.			
	(d) A process in which pressure remains constant.				
V1	D 1.	5 Fuglistes V6 Cuesto			122/

11. The change in entropy for reversible process,	1	K1	CO4
(a) $\Delta S_{Total} = 0$ (b) $\Delta S_{Total} < 0$ (c) $\Delta S_{Total} > 0$ (d) $\Delta S_{Total} = unity$			
12. Extensive property in the following is	1	K1	CO4
(a) Mass (b) Pressure (c) Temperature (d) Concentration 13. Which of the following is considered a renewable fuel?	1	K1	CO5
(a) Natural gas (b) Coal (c) Biomass (d) Diesel	1	11.1	003
14. Which of the following is NOT a gaseous fuel?	1	K1	CO5
(a) Biogas (b) LPG (c) CNG (d) Kerosene			
15. LPG (Liquefied Petroleum Gas) mainly contains:	1	K1	CO5
(a) Methane and hydrogen (b) Propane and butane			
(c) Ethanol and methanol (d) Carbon monoxide and oxygen 16. Latent heat of steam is	1	<i>K1</i>	CO5
(a) 2240 cal / g (b) 8080 cal / g (c) 587 cal / g (d) 34500 cal / g			
17. Which of the following techniques is used to analyze the size of nanoparticles?	1	<i>K1</i>	CO6
(a) X-ray diffraction (XRD)			
(b) Transmission electron microscopy (TEM)			
(c) Fourier-transform infrared spectroscopy (FTIR)(d) UV-visible spectroscopy			
18. The primary building block of fullerenes is:	1	<i>K1</i>	CO6
(a) Spherical carbon structures. (b) Graphite sheets.			
(c) A single-layered honeycomb carbon network. (d) Diamond-like structures.			
19. Which type of bonding dominates in nanoparticles?	1	K1	CO6
(a) Covalent bonding(b) Ionic bonding(c) Metallic bonding(d) Surface bonding and van der Waals forces			
(c) Metallic bonding (d) Surface bonding and van der Waals forces 20. Which of the following nanoparticle used in targeted drug delivery applications?	1	<i>K1</i>	CO6
(a) Ag (b) Pt (c) Cu (d) Au			
$PART - B (10 \times 2 = 20 Marks)$			
Answer ALL Questions	2	νı	COL
Answer ALL Questions 21. Define the degree of polymerization.	2	K1	CO1
Answer ALL Questions 21. Define the degree of polymerization. 22. Classify conducting polymers and give examples.	2	K2	CO1
Answer ALL Questions 21. Define the degree of polymerization. 22. Classify conducting polymers and give examples. 23. Define single electrode potential.	2 2	K2 K1	CO1 CO2
Answer ALL Questions 21. Define the degree of polymerization. 22. Classify conducting polymers and give examples. 23. Define single electrode potential. 24. Differentiate primary and secondary batteries.	2 2 2	K2 K1 K1	CO1 CO2 CO2
Answer ALL Questions 21. Define the degree of polymerization. 22. Classify conducting polymers and give examples. 23. Define single electrode potential. 24. Differentiate primary and secondary batteries. 25. State Stark-Einstein Law of photochemistry.	2 2 2 2	K2 K1 K1 K2	CO1 CO2 CO2 CO3
Answer ALL Questions 21. Define the degree of polymerization. 22. Classify conducting polymers and give examples. 23. Define single electrode potential. 24. Differentiate primary and secondary batteries. 25. State Stark-Einstein Law of photochemistry. 26. Write the key components of a UV-visible spectroscopy instrument.	2 2 2 2 2	K2 K1 K1 K2 K1	CO1 CO2 CO2 CO3
Answer ALL Questions 21. Define the degree of polymerization. 22. Classify conducting polymers and give examples. 23. Define single electrode potential. 24. Differentiate primary and secondary batteries. 25. State Stark-Einstein Law of photochemistry. 26. Write the key components of a UV-visible spectroscopy instrument. 27. Define entropy. What is its physical significance?	2 2 2 2 2 2 2	K2 K1 K1 K2 K1	CO1 CO2 CO2 CO3 CO3
Answer ALL Questions 21. Define the degree of polymerization. 22. Classify conducting polymers and give examples. 23. Define single electrode potential. 24. Differentiate primary and secondary batteries. 25. State Stark-Einstein Law of photochemistry. 26. Write the key components of a UV-visible spectroscopy instrument. 27. Define entropy. What is its physical significance? 28. What are biofuels? Give examples.	2 2 2 2 2 2 2 2	K2 K1 K1 K2 K1 K1	CO1 CO2 CO2 CO3 CO3 CO4 CO5
Answer ALL Questions 21. Define the degree of polymerization. 22. Classify conducting polymers and give examples. 23. Define single electrode potential. 24. Differentiate primary and secondary batteries. 25. State Stark-Einstein Law of photochemistry. 26. Write the key components of a UV-visible spectroscopy instrument. 27. Define entropy. What is its physical significance?	2 2 2 2 2 2 2 2 2	K2 K1 K1 K2 K1 K1 K1 K1	CO1 CO2 CO2 CO3 CO3 CO4 CO5
Answer ALL Questions 21. Define the degree of polymerization. 22. Classify conducting polymers and give examples. 23. Define single electrode potential. 24. Differentiate primary and secondary batteries. 25. State Stark-Einstein Law of photochemistry. 26. Write the key components of a UV-visible spectroscopy instrument. 27. Define entropy. What is its physical significance? 28. What are biofuels? Give examples.	2 2 2 2 2 2 2 2	K2 K1 K1 K2 K1 K1	CO1 CO2 CO2 CO3 CO3 CO4 CO5
Answer ALL Questions 21. Define the degree of polymerization. 22. Classify conducting polymers and give examples. 23. Define single electrode potential. 24. Differentiate primary and secondary batteries. 25. State Stark-Einstein Law of photochemistry. 26. Write the key components of a UV-visible spectroscopy instrument. 27. Define entropy. What is its physical significance? 28. What are biofuels? Give examples. 29. Mention the main components of Compressed Natural Gas (CNG).	2 2 2 2 2 2 2 2 2	K2 K1 K1 K2 K1 K1 K1 K1	CO1 CO2 CO2 CO3 CO3 CO4 CO5
Answer ALL Questions 21. Define the degree of polymerization. 22. Classify conducting polymers and give examples. 23. Define single electrode potential. 24. Differentiate primary and secondary batteries. 25. State Stark-Einstein Law of photochemistry. 26. Write the key components of a UV-visible spectroscopy instrument. 27. Define entropy. What is its physical significance? 28. What are biofuels? Give examples. 29. Mention the main components of Compressed Natural Gas (CNG). 30. What is a quantum dot? PART - C (6 × 10 = 60 Marks)	2 2 2 2 2 2 2 2 2	K2 K1 K1 K2 K1 K1 K1 K1	CO1 CO2 CO2 CO3 CO3 CO4 CO5
Answer ALL Questions 21. Define the degree of polymerization. 22. Classify conducting polymers and give examples. 23. Define single electrode potential. 24. Differentiate primary and secondary batteries. 25. State Stark-Einstein Law of photochemistry. 26. Write the key components of a UV-visible spectroscopy instrument. 27. Define entropy. What is its physical significance? 28. What are biofuels? Give examples. 29. Mention the main components of Compressed Natural Gas (CNG). 30. What is a quantum dot? PART - C (6 × 10 = 60 Marks) Answer ALL Questions	2 2 2 2 2 2 2 2 2 2	K2 K1 K1 K2 K1 K1 K1 K1 K1	CO1 CO2 CO3 CO3 CO4 CO5 CO5 CO6
Answer ALL Questions 21. Define the degree of polymerization. 22. Classify conducting polymers and give examples. 23. Define single electrode potential. 24. Differentiate primary and secondary batteries. 25. State Stark-Einstein Law of photochemistry. 26. Write the key components of a UV-visible spectroscopy instrument. 27. Define entropy. What is its physical significance? 28. What are biofuels? Give examples. 29. Mention the main components of Compressed Natural Gas (CNG). 30. What is a quantum dot? PART - C (6 × 10 = 60 Marks) Answer ALL Questions 31. a) Describe the process and mechanism of free radical addition polymerization	2 2 2 2 2 2 2 2 2	K2 K1 K1 K2 K1 K1 K1 K1	CO1 CO2 CO2 CO3 CO3 CO4 CO5
Answer ALL Questions 21. Define the degree of polymerization. 22. Classify conducting polymers and give examples. 23. Define single electrode potential. 24. Differentiate primary and secondary batteries. 25. State Stark-Einstein Law of photochemistry. 26. Write the key components of a UV-visible spectroscopy instrument. 27. Define entropy. What is its physical significance? 28. What are biofuels? Give examples. 29. Mention the main components of Compressed Natural Gas (CNG). 30. What is a quantum dot? PART - C (6 × 10 = 60 Marks) Answer ALL Questions	2 2 2 2 2 2 2 2 2 2	K2 K1 K1 K2 K1 K1 K1 K1 K1	CO1 CO2 CO3 CO3 CO4 CO5 CO5 CO6
Answer ALL Questions 21. Define the degree of polymerization. 22. Classify conducting polymers and give examples. 23. Define single electrode potential. 24. Differentiate primary and secondary batteries. 25. State Stark-Einstein Law of photochemistry. 26. Write the key components of a UV-visible spectroscopy instrument. 27. Define entropy. What is its physical significance? 28. What are biofuels? Give examples. 29. Mention the main components of Compressed Natural Gas (CNG). 30. What is a quantum dot? PART - C (6 × 10 = 60 Marks) Answer ALL Questions 31. a) Describe the process and mechanism of free radical addition polymerization with a suitable example. OR	2 2 2 2 2 2 2 2 2 2	K2 K1 K1 K2 K1 K1 K1 K1 K1	CO1 CO2 CO3 CO3 CO4 CO5 CO5 CO6
Answer ALL Questions 21. Define the degree of polymerization. 22. Classify conducting polymers and give examples. 23. Define single electrode potential. 24. Differentiate primary and secondary batteries. 25. State Stark-Einstein Law of photochemistry. 26. Write the key components of a UV-visible spectroscopy instrument. 27. Define entropy. What is its physical significance? 28. What are biofuels? Give examples. 29. Mention the main components of Compressed Natural Gas (CNG). 30. What is a quantum dot? PART - C (6 × 10 = 60 Marks) Answer ALL Questions 31. a) Describe the process and mechanism of free radical addition polymerization with a suitable example. OR	2 2 2 2 2 2 2 2 2	K2 K1 K1 K2 K1 K1 K1 K1 K1 K2	CO1 CO2 CO3 CO3 CO4 CO5 CO5 CO6
Answer ALL Questions 21. Define the degree of polymerization. 22. Classify conducting polymers and give examples. 23. Define single electrode potential. 24. Differentiate primary and secondary batteries. 25. State Stark-Einstein Law of photochemistry. 26. Write the key components of a UV-visible spectroscopy instrument. 27. Define entropy. What is its physical significance? 28. What are biofuels? Give examples. 29. Mention the main components of Compressed Natural Gas (CNG). 30. What is a quantum dot? PART - C (6 × 10 = 60 Marks) Answer ALL Questions 31. a) Describe the process and mechanism of free radical addition polymerization with a suitable example. OR b) Discuss the preparation, properties, and uses of Nylon and Teflon fibers. How	2 2 2 2 2 2 2 2 2	K2 K1 K1 K2 K1 K1 K1 K1 K1 K2	CO1 CO2 CO3 CO3 CO4 CO5 CO5 CO6
Answer ALL Questions 21. Define the degree of polymerization. 22. Classify conducting polymers and give examples. 23. Define single electrode potential. 24. Differentiate primary and secondary batteries. 25. State Stark-Einstein Law of photochemistry. 26. Write the key components of a UV-visible spectroscopy instrument. 27. Define entropy. What is its physical significance? 28. What are biofuels? Give examples. 29. Mention the main components of Compressed Natural Gas (CNG). 30. What is a quantum dot? PART - C (6 × 10 = 60 Marks) Answer ALL Questions 31. a) Describe the process and mechanism of free radical addition polymerization with a suitable example. OR b) Discuss the preparation, properties, and uses of Nylon and Teflon fibers. How	2 2 2 2 2 2 2 2 2	K2 K1 K1 K2 K1 K1 K1 K1 K1 K2	CO1 CO2 CO3 CO3 CO4 CO5 CO5 CO6
Answer ALL Questions 21. Define the degree of polymerization. 22. Classify conducting polymers and give examples. 23. Define single electrode potential. 24. Differentiate primary and secondary batteries. 25. State Stark-Einstein Law of photochemistry. 26. Write the key components of a UV-visible spectroscopy instrument. 27. Define entropy. What is its physical significance? 28. What are biofuels? Give examples. 29. Mention the main components of Compressed Natural Gas (CNG). 30. What is a quantum dot? PART - C (6 × 10 = 60 Marks) Answer ALL Questions 31. a) Describe the process and mechanism of free radical addition polymerization with a suitable example. OR b) Discuss the preparation, properties, and uses of Nylon and Teflon fibers. How are they used in textiles and industrial applications?	2 2 2 2 2 2 2 2 2 10	K2 K1 K1 K2 K1 K1 K1 K1 K1 K2 K2 K2	CO1 CO2 CO3 CO3 CO4 CO5 CO5 CO6

OR

b) Describe in detail the construction and working of lead-acid battery. Write its *K*2 CO2advantages and uses. CO3 33. Describe the Jablonski diagram in detail. Explain the processes of internal *K3* conversion, intersystem crossing, fluorescence, and phosphorescence. OR *K3* CO3 Demonstrate the instrumentation used in UV-visible spectroscopy. Include a block diagram and explain the function of each component. 10 *K*3 CO4 Derive all the four Maxwell relations. 34. OR *K*2 CO4 Derive the Gibbs-Helmholtz equation. How can it be used to determine the spontaneity of a reaction? *K*2 Discuss the Otto-Hoffmann method for the manufacture of metallurgical coke. CO₅ 35. Summarize the steps involved in the process. *K*2 CO5 b) Explain the steps involved in the ORSAT method of analyzing flue gases. Why is it essential for improving combustion efficiency? 5 *K3* C06 36. a) i) Summarize the role of gold nanoparticles in biomedical applications 5 *K3* CO6 ii) Illustrate any two unique properties of nanomaterials. *K*2 CO6 b) Describe in detail Laser ablation and CVD methods for nanomaterial synthesis.

What are its advantages and applications?