				Reg. No.									
		Question Pape	er Co	de	1333	2							
	B.E. / B.Tech	n DEGREE EXA	MIN	ATIONS,	NOV /	DEC	2024	(JA	N –	2025	5)		
		~ ~ ~ ~		Semester	~								
,	4BSMA102 - INTROD	Computer Sci			-			ту /	\ NT) ST.	ATIS	TIC	2
2				ions - 2024	,	ODA	DILI	111	1111	, 917	115	, IIC	3
		(Use of Stat	tistica	<i>l Table</i> is	permit	ted)							
Du	ration: 3 Hours									Max	. Mar	ks: 1	00
		PART - A (M		$(20 \times 1 = 2)$ L Question		ks)					Marks	K – Level	CO
1.	The domain and range			-	15						1	K2	CO1
	(a) [-1,0] and [0,1]	•			d [0,1]	((d)	[-	-1,1]] and			
2	[-1,1]	·	ŋ								1	K٦	CO1
2.	Which of the following (a) $x + x^3$ (b)			$\cos x$			(d) si	n x c	os x		1	K2	COI
3.	$\lim_{x \to 0} \frac{\sin x}{x} = \underline{\qquad}$	·									1	K1	<i>CO1</i>
	$\begin{array}{c} \lim_{x \to 0} x \\ \text{(a) } 0 \end{array} \qquad \qquad$		(c) -				(d) 1						
4.			(0)				(u) 1				1	K2	<i>CO2</i>
	The value of $\int_{1}^{2} \left(\frac{x-2}{2}\right)^{2}$	dx is											
	(a) $\frac{3}{4} - 2\log 2$ (b)	$\frac{3}{2} + 2 \log 2$	(c) ·	$\frac{1}{2} - \log 4$			(d) $\frac{1}{4}$	+ los	g 4				
5.	7	т		4			4	•	5		1	K2	<i>CO2</i>
0.	The value of $\int_{0}^{\frac{\pi}{2}} \cos^6 x dx$	tis .											
	0												
	(a) $\frac{5\pi}{32}$	(b) $\frac{3\pi}{16}$		(c) $\frac{\pi}{4}$			(d)	0					
6.	$a\sqrt{a^2-x^2}$	10		•							1	K2	<i>CO2</i>
	The value of $\int_{0}^{a} \int_{0}^{\sqrt{a^2 - x^2}} dy$	dx is											
	(a) $\frac{\pi a}{2}$	(b) $\frac{\pi a^2}{2}$		(c) $\frac{\pi a}{4}$	2		(4)	$\frac{\pi a}{2}$					
7	2	2	- 4 -	$(c) - \frac{1}{4}$	_		(u)	2			1	K1	CO3
7.	When A and B are mutt (a) $P(A \cup B) = P(A) + H$	•		b) $P(A \cup B)$	B) = P(A)	(4) + P	P(B) -	P(A	$\cap B$)	1	K1	COS
	(c) $P(A \cup B) = P(A) + B$		(d) $P(A \cup B)$	P(A) = P(A)	4) – P	P(B)			·			
8.	If $P(B) > 0$, then	N N					D)				1	K1	СО3
	(a) $P(A/B) = \frac{P(A \cup B)}{P(B)}$	<u>)</u>		(b) <i>P</i> (A/B) =	$\frac{P(A)}{P(A)}$	$\frac{(B)}{(B)}$						
						```							
C	(c) $P(A/B) = \frac{P(A \cup B)}{P(A)}$			$(\mathbf{u}) P(\mathbf{u})$	A/B) =	<i>P</i> (	<i>A</i> )						000
9.	The value of $E(2X + 3)$	) is b) $2E(X) - 3$	(c)	f(V) + f		(d)	F(V)	1 2			1	K1	СО3
	(a) $2E(X)$ (b)	$\frac{2E(A)-3}{2E(A)-3}$		2E(X) + 3		(u) I	E(X)	T J					

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create 1

10.	The S.D. of a binomial distribution is			1	K1	<i>CO</i> 4
	(a) $np$ (b) $\sqrt{np}$ (c) $np$	ıpq	(d) $\sqrt{npq}$			~~ .
11.	The variance of a Poisson distribution is			1	KI	<i>CO4</i>
	(a) $\frac{1}{\lambda}$ (b) $\frac{1}{\lambda^2}$	(c) $\lambda$	(d) $\lambda^2$			
12.	The M.G.F. of the geometric distribution is			1	Kl	<i>CO</i> 4
	(a) $\frac{qe^{t}}{1-pe^{t}}$ (b) $\frac{pe^{t}}{1-qe^{t}}$	(c) $\frac{qe^t}{1+pe^t}$	(d) $\frac{pe^t}{1+ae^t}$			
	• •	(c) $1 + pe^t$	(d) $1 + qe^{t}$			
13.	The square of standard normal variate is			1	K1	<i>CO5</i>
	<ul><li>(a) Normal Distribution</li><li>(c) Chi-square Distribution</li></ul>		stribution stribution			
14.	Choose the distribution where the memory less p			1	K1	<i>CO5</i>
	(a) Normal Distribution (b) E					
15	(c) Uniform Distribution (d) E The degrees of freedom of $t$ distribution with sar	Exponential Dist	ribution	1	K1	CO5
15.			(d) <i>n</i> – 3			000
16.	$\frac{1}{2}e^{-\frac{x}{3}} x^{2}$	> 0 .		1	K2	CO5
	(a) $n$ (b) $n-1$ (c) $n$ The mean of the distribution $f(x) = \begin{cases} \frac{1}{3}e^{-\frac{x}{3}}, & x > 0\\ 0, otherw \end{cases}$	is is				
	(a) $\frac{1}{3}$ (b) 1 (c) 3		(d) 4			
17.	The data which have already been collected by so			1	K1	<i>CO</i> 6
	(a) Raw data (b) Array data (c) S					
18.	When data are observed over a period of time	, the type of cl	assification is known as	1	K1	<i>CO6</i>
	$\overline{(a)}$ geographical classification	(b) chronolog	rical classification			
	(c) qualitative classification		ve classification			
19.	In the statistical table column headings are called	· · · · ·		1	K1	<i>CO6</i>
20		•	(d) source note	1	K I	CO6
20.	The relationship between mean, median and mod (a) Median = $3 \text{ Mode} - 2 \text{ Mean}$ (b) M			1	KI	000
	(c) Mode = $3$ Median $- 2$ Mean (d) M					
	PART - B (10 × 2 =	- 20 Marks)				
	Answer ALL Q	,				
21.				2	K3	<i>CO1</i>
	Evaluate $\lim_{x\to 1} \frac{x^2-1}{x-1}$ .					
22.	If $f(x) = \sin[\cos(\tan x)]$ , then find $f'(x)$ .			2	K2	<i>CO1</i>
23.	Evaluate $\int x^3 \cos(x^4 + 2) dx$ .			2	K3	<i>CO2</i>
24.				2	K2	<i>CO2</i>
	Evaluate $\int_{0}^{a} \int_{0}^{b} (x+y) dx dy$ .					
25.	If 3 balls are randomly drawn from a bowl conta	ining 6 white an	d 5 black balls, what are	2	K3	CO3
	the probability that one of the balls is white and t	-				
26.		$\left(\frac{1}{x}\right)$	$e^{-x/2}$ if $x > 0$	2	K3	CO3
	Compute $E[X]$ if X has a density function give	n by $f(x) = \begin{cases} 4^n \\ 4^n \end{cases}$	· · · ·			
07			-	2	K)	604
27.	A discrete R.V. X has moment generating function	on $M_{\rm v}(t) = \left(\frac{1}{-}\right)$	$\left(\frac{3}{2}e^{t}\right)^{2}$ . Find E(X).	2	K2	<i>CO</i> 4
		(4)	4)			
28	Var (X). What is memory less property? Which discrete d	istribution follow	vs this property?	2	K1	CO4
<i>2</i> 0.	what is memory less property? which discrete d	130110001011 101101	vs ans property:	-		207
K1 -	- Remember; K2 – Understand; K3 – Apply; K4 – Analyze; .	K5 – Evaluate; K6 -	- Create		133	32
		2				

- 29. Define Type I and Type II error.
- 30. Present the following information in a suitable form.

In 2002, the number of workers in the trade union was 3,450 of which 3,200 were men. The number of non-trade union workers was 760 of which 330 were women.

In 2003, out of a total of 4,000 workers in a factory, 3,300 were members of a trade union. The number of women workers employed was 500 out of which 400 did not belong to any union.

## **PART - C (6 × 10 = 60 Marks)**

Answer ALL Questions

31.	a)	Find the values of $a$ and $b$ that make $f$ continuous on $(-\infty,\infty)$ ,	10	K3	CO1				
		$\int \frac{x^3 - 8}{x - 2} \qquad if \qquad x < 2$							
		$f(x) = \begin{cases} ax^2 - bx + 3 & if  2 \le x \le 3 \end{cases}$							
		$f(x) = \begin{cases} \frac{x^3 - 8}{x - 2} & \text{if } x < 2\\ ax^2 - bx + 3 & \text{if } 2 \le x \le 3\\ 2x - a + b & \text{if } x \ge 3 \end{cases}$							
		OR							
	b)	For the function $f(x) = 2x^3 + 3x^2 - 36x$ ,	10	К3	<i>CO1</i>				
		<ol> <li>(1) Find the intervals on which it is increasing or decreasing.</li> <li>(2) Find the local maximum and minimum values of f.</li> <li>(3) Find the intervals of concavity and the inflection points.</li> </ol>							
22	`		10	V2	cor				
32.	a)	Evaluate $\int e^{ax} \sin bx  dx$ by integration by parts.	10	K3	CO2				
OR b) r v z 10 K3									
	b)	Find the volume of the tetrahedron bounded by the plane $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ and the							
		co-ordinate plane. $x = 0, y = 0, z = 0$ .							
33.	a)	The chances of A, B and C to becoming the general manager of a company are in the ratio 4:2:3. The probabilities that the bonus scheme will be introduced in the company if A, B and C become general manager are 0.3, 0.7 and 0.8 respectively. If the bonus scheme has been introduced, what is the probability that A has been appointed as a general manager?	10	K3	CO3				
	• 、	OR	10	W2	COL				
	b)	Let X be a random variable with probability density function $\begin{pmatrix} (1 & 2) \\ (1 & 2) \end{pmatrix} = 1$	10	K3	CO3				
		$f(x) = \begin{cases} c(1-x^2), & -1 < x < 1 \\ 0, & otherwise \end{cases}.$							
		(1) What is the value of c?							
		(2) What is the cumulative distribution function of $X$ ?							
					~~ .				
34.	a)	Out of 800 families with 4 children each, how many families would be expected to have (1) 2 boys & 2 girls, (2) at least one boy, (3) at most 2 girls, (4) children of both sexes?	10	K3	<i>CO4</i>				
		OR							
	b)	The number of monthly breakdowns of a computer is a random variable having a Poisson distribution with mean equal to 1.8. Find the probability that this computer will function for a month (1) without a breakdown (2) with only one breakdown.	10	К3	<i>CO4</i>				

2 K1 CO5 2 K2 CO6

*13332* 

35. a) If X is uniformly distributed over (0, 10), calculate (1) P(X < 3) (2) P(X > 7) ¹⁰ ^{K3} ^{CO5} and (3) P(1 < X < 6).

0	R
$\mathbf{v}$	

b) The theory predicts that the proportion of beans in four given group should be ¹⁰ K3 CO5 9: 3: 3: 1. In an examination with 1600 beans, the numbers in the four groups were 882, 313, 287, and 118. Does the experiment support the theory?

36.	a)	Calculate the mean, median and mode from the following data:	10	К3	<i>CO6</i>
-----	----	--------------------------------------------------------------	----	----	------------

Age	55-60	50-55	45-50	40-45	35-40	30-35	25-30	20-25		
No. of people	7	13	15	20	30	33	28	14		
OR										

b) Calculate the quartile deviation and coefficient of quartile deviation from the ¹⁰ K3 CO6 following data:

Age in years:	20	30	40	50	60	70	80
No. of Members:	3	61	132	153	140	51	3