Reg. No.											
Question Paper Code	13359										

M.E. / M.Tech. - DEGREE EXAMINATIONS, NOV / DEC 2024 (JAN - 2025)

First Semester

M.E. - CAD/ CAM

24PCDPC103 - COMPUTER GRAPHICS

Regulations - 2024

Duration: 3 Hours

Max. Marks: 100

13359

	PART - A $(10 \times 2 = 20 \text{ Marks})$ Answer ALL Questions	Marks	K – Level	со
1.	What is the purpose of Object Geometry in computer graphics?	2	Kl	C01
2.	Describe the process of loading the frame buffer in a graphics system.	2	Kl	CO1
3.	Illustrate a step-by-step process for the window-to-viewport coordinate transformation in 2D graphics.	2	K2	<i>CO2</i>
4.	Show a composite transformation matrix that combines translation, rotation, and scaling for a fun graphics application.	2	K2	<i>CO2</i>
5.	Outline a simple algorithm for performing a three-dimensional translation transformation.	2	K2	CO3
6.	Explain a composite transformation matrix for a three-dimensional object that involves translation, rotation, and scaling.	2	K2	CO3
7.	How an intuitive explanation of how the RGB color model is applied in computer graphics?	2	K1	<i>CO</i> 4
8.	Illustrate a simple scenario where the YIQ color model might be preferable over other color models.	2	K2	<i>CO</i> 4
9.	Explain a simple animation function for a given sequence, considering key frames and motion specification.	2	K2	CO5
10.	Devise a motion specification for an animated sequence, outlining the movement of objects over time.	2	K2	CO5

PART - B (5 × 13 = 65 Marks)

Answer ALL Questions

11. a) What are the key features of Graphics Software? Write its role in ¹³ K1 CO1 enhancing graphic output.

OR

- b) Tell the importance of Object Geometry in the context of computer ¹³ ^{K1} ^{CO1} graphics.
- 12. a) Explain the step-by-step algorithm for the window-to-viewport ¹³ K² CO² coordinate transformation process in two-dimensional graphics.

- b) Devise a composite transformation matrix that combines translation, ¹³ K² CO² rotation, and scaling operations for a practical graphic application, illustrating its application.
- 13. a) Develop a step-by-step algorithm for a three-dimensional translation ¹³ K³ CO³ transformation.

OR

- b) Develop a composite transformation matrix for a three-dimensional ¹³ K³ CO³ object, incorporating translation, rotation, and scaling.
- 14. a) Explain an intuitive explanation of how the RGB color model is ¹³ K² CO⁴ practically used in Computer Graphics.

OR

- b) Devise a scenario where the YIQ color model might be more suitable ¹³ K² CO⁴ or advantageous compared to other color models.
- 15. a) Develop a short animation sequence that utilizes both morphing and ¹³ K³ CO5 tweening.

OR

b) Develop a motion specification for an animated sequence, ¹³ K³ CO⁵ incorporating various elements such as key frames and morphing.

PART - C (1 × 15 = 15 Marks)

16. a) Show the interdependence between Input Devices, Graphics Software, ¹⁵ K² CO1 and Output Primitives in a computer graphics system.

OR

b) Explain the role of Bezier curves and surfaces in three-dimensional ¹⁵ K² CO³ modeling, highlighting their advantages and potential limitations.