		R	leg. No.													
		Question Paper Code			13334											
	M.E. / M.Tech DEGREE EXAMINATIONS, NOV / DEC 2024 (JAN – 2025)															
First Semester																
M.E Computer Science and Engineering (with Specialization in Networks)																
(Common to M.E Computer Science and Engineering)																
20PCNPC101 / 24PCNPC101 - ADVANCED COMPUTER ARCHITECTURE																
	Regulations – 2020 / 2024															
Duration: 3 Hours Max										x. Marks: 100						
PART - A $(10 \times 2 = 20 \text{ Marks})$ Answer ALL Ouestions									Marks ^{K–} CO Level CO)			
1.	Define Instruction level parallelism.								2	Kl	CO	1				
2.	Differentiate coarse grained and fine grained multithreading.								2	K2	CO	1				
3.	List the advantages of Multicore processor.								2	Kl	CO.	2				
4.	Define Principle of locality.									2	Kl	CO.	2			
5.	Label the two in challenging.	nportant hurdle	es which	h	make	p	arall	el	pro	oces	ssin	g	2	K1	CO.	3
6.	List the Factors af performance.	fecting the two	o compo	ner	nts of	f n	niss	rate	e i	n c	ach	e 2	2	K1	CO.	3
7.	Differentiate between SMT and CMP.								2	K2	CO	4				
8.	What do you mean by airside economization?							2	Kl	CO	4					
9.	Define Loop Level P	efine Loop Level Parallelism.						2	Kl	CO.	5					
10.	State the important for	eatures of CPU a	nd GPU.										2	K1	CO.	5

PART - B $(5 \times 13 = 65 \text{ Marks})$

Answer ALL Questions

11. a) Discuss how to reduce Branch cost with dynamic hardware prediction ¹³ K² CO1 technique.

OR

- b) Discuss how hardware based speculation is used to overcome control ¹³ K2 CO1 dependence.
- 12. a) Describe the various cache hit time reduction techniques for improving ¹³ K² CO² the cache performance.

OR

b) Explain cache hit time, miss rate and miss penalty with an example and ¹³ K² CO² present an outline of Virtual memory and virtual machines.

13334

13. a) Illustrate the concept of Multistage Interconnection Networks and ¹³ K3 CO3 explain how to design Dimensions of Interconnection Networks with suitable diagram.

OR

- b) Discuss the Cache Coherence Issues and discuss the Performance ¹³ K3 CO3 measurements of the Commercial workload with an example.
- 14. a) i) Describe the Computer Architecture of Warehouse-Scale Computers. 7 K2 CO4
 - ii) Explain the Physical Infrastructure and Costs of Warehouse-Scale 6 K2 CO4 Computers.

OR

- b) i) Write short notes on Batch processing framework.
 ii) Explain the factors involved in Reducing Customer Risks and 6 K2 CO4 Economies of Scale.
- a) Elaborate the differences between the following

 i) Vector architectures and GPUs.
 ii) Multimedia SIMD computers and GPUs. *K*2 CO5

OR

b) Illustrate the concept of Detecting and Enhancing Loop Level ¹³ K2 CO5 Parallelism with suitable example.

$PART - C (1 \times 15 = 15 Marks)$

16. a) State the primary components of the instruction set architecture of ¹⁵ K3 CO6 VMIPS and explain the basic vector architecture with neat block diagram.

OR

b) Explain the details of handling Multidimensional Arrays in Vector ¹⁵ K3 CO6 Architectures also analyze how to Handle Sparse Matrices in Vector Architectures.