	Reg. No.						
	Question Paper Code	13369]				
M.E. / M.Tech DEGREE EXAMINATIONS, NOV / DEC 2024 (JAN - 2025)							
First Semester							

M.E. - Computer Science and Engineering

(Common to M.E. Computer Science and Engineering (with Specialization in Networks)) 20PCSPC101 / 24PCSPC101 - ADVANCED DATA STRUCTURES AND

ALGORITHMS

Regulations - 2020 / 2024

Du	aration: 3 Hours	Max. Marks: 100		
	PART - A $(10 \times 2 = 20 \text{ Marks})$ Answer ALL Ouestions	Marks	K – Level	со
1.	What is the time complexity of an algorithm?	2	Kl	<i>CO1</i>
2.	List the important problems that are solved by algorithms.	2	K1	<i>CO1</i>
3.	What is the procedure to delete a key from B-Tree?	2	K1	<i>CO2</i>
4.	List out the properties of Red black tree.	2	Kl	<i>CO2</i>
5.	What is an Adjacency Matrix?	2	Kl	CO3
6.	Define minimum spanning tree. Give an example.	2	Kl	CO3
7.	What is all pair shortest path algorithm?	2	K1	<i>CO4</i>
8.	Define Floyd Warshall algorithm.	2	K1	<i>CO4</i>
9.	Recall greedy technique.	2	K1	CO5
10.	What is meant by principle of optimality?	2	<i>K1</i>	CO5

PART - B $(5 \times 13 = 65 \text{ Marks})$

Answer ALL Questions

11. a) Explain the method of solving recurrence equations with suitable ¹³ K2 CO1 example.

OR

- b) Describe the method of solving Non recursive equations with suitable ¹³ K2 CO1 examples.
- 12. a) Explain in detail about the various operations associated with BTrees. ¹³ K2 CO2

OR

b) Write an algorithm for inserting and deleting a node in a binary search ¹³ K2 CO2 tree.

13369

13. a) What is meant by topological sort? Write an algorithm to perform ¹³ K² CO3 topological sort to sort 45, 12, 90, 08, 11, 32, 67, 13, 27.

OR

- b) Compare and contrast depth-first search and breadth-first search ¹³ K2 CO3 traversal of a graph with suitable examples.
- 13 K2 CO4 14. a) Explain the Dijkstra's Shortest path algorithm and its efficiency. OR 13 K2 CO4 b) Demonstrate the working of Bellman-Ford algorithm with an example. 15. a) Discuss in detail about in Optimal Binary Search tree. 13 K2 CO5 OR b) Illustrate the steps involved in developing a dynamic programming ¹³ K2 CO5 algorithm.

PART - C $(1 \times 15 = 15 \text{ Marks})$

16. a) Interpret non-deterministic sorting algorithm and also analyze its ¹⁵ K2 CO6 complexity.

OR

b) Explain how P and NP problems are related with an example. 15 K2 CO6