	Reg. No.				
	Question Paper Code13361				
M.E. / M.Tech DEGREE EXAMINATIONS, NOV / DEC 2024 (JAN - 2025)					
First Semester					
M.E - Embedded Systems Technologies					
24PESPC104 - SOFTWARE FOR EMBEDDED SYSTEMS					
Regulations - 2024					
Duration: 3 Hours Max. Marks: 100					
PART - A $(10 \times 2 = 20 \text{ Marks})$ Answer ALL Questions			Marks	K – Level	CO
1.	Compare C and Assembly Language Programming.		2	K2 (201
2.	Mention the different types of expressions in C, and how are they evalu	uated.	2	K2 (201
3.	Name the main stages of the C programming tool chain in Linux.		2	KI C	CO2
4.	How memory management functions work in GNU C Library?		2	K2 (CO2
5.	Write the importance of header files in C projects.		2	KI (CO3
6.	Outline the importance of common timer mode used in embedded syste	ems.	2	K2 (CO3
7.	Define an operating system with an example.		2	KI (CO4
8.	Classify any four scheduling algorithms in Embedded OS.		2	K2 (CO4
9.	What is a dictionary in Python, and how is it different from a list?		2	KI (CO5
10.	. Write a python code for handle exceptions.		2	K2 (CO5

PART - B $(5 \times 13 = 65 \text{ Marks})$

Answer ALL Questions

11. a) Write an assembly language program and C programming to turn an ¹³ K² CO1 LED on and off with a delay and explain each step briefly

OR

- b) Compare and contrast the working of branching instructions like JMP, ¹³ ^{K2} ^{CO1} JE, JNE work in assembly language program and C programming
- 12. a) Classify and describe the main stages of the C compilation process with ¹³ K² CO² examples.

OR

b) Describe the purpose of the GNU configure and the role of autoconf, ¹³ K² CO² automake and libtool in the GNU build system, and explain how it assists in software portability.

13361

13. a) Explain the use of pointers in Embedded C programming and their ¹³ K² CO³ importance in direct hardware manipulation. Provide an example of accessing hardware registers.

OR

- b) Elaborate the impact of real-time constraints on the design and ¹³ K² CO³ implementation of timeout mechanisms in embedded systems. Include considerations for critical applications like automotive or medical devices.
- 14. a) Describe the architecture and functionality of sEOS and discuss its 13 K² CO4 features and the scenarios where it can be effectively utilized with suitable diagram.

OR

- b) Illustrate different memory allocation strategies for sEOS when ¹³ K² CO⁴ implementing serial communication features. Compare static and dynamic memory allocation in terms of efficiency, fragmentation, and suitability for embedded systems.
- 15. a) i) Write a Python code using a class that represents a simple bank account. ⁷ K2 CO5 Include methods for deposit, withdrawal, and checking balance. Ensure appropriate error handling for invalid operations.
 - ii) Identify the main methods available in Python for dictionaries with an 5 K2 CO5 example.

OR

- b) i) Define lambda functions in Python and explain their use cases and 7 K2 CO5 provide examples of how to define and invoke a lambda function.
 - ii) Explain the role of the Python interpreter in executing Python code. ⁵ K2 CO5 What are the main types of Python interpreters available?

PART - C (1× 15 = 15 Marks)

16. a) Explain Recursive function. How does it work? Illustrate with an ¹⁵ K2 CO6 example.

OR

b) Write a python program to find the missing number in an array. 15 K2 CO6

13361