Reg. No.												
Question Paper Code	13353											
		10		~ -	. .	-		•	 		 -	

M.E. / M.Tech. - DEGREE EXAMINATIONS, NOV / DEC 2024 (JAN - 2025)

First Semester

M.E. - Power Electronics and Drives

24PPEPC102 - ANALYSIS OF ELECTRICAL MACHINES

Regulations - 2024

Duration: 3 Hours

Max. Marks: 100

13353

	PART - A $(10 \times 2 = 20$ Marks) Answer ALL Questions	Marks	K – Level	со
1.	Compare between the leakage flux and fringing flux.	2	K2	C01
2.	Define Field energy and Co energy.	2	K1	C01
3.	What is the function of static reference frame in D.C motor analysis?	2	Kl	<i>CO2</i>
4.	Outline the torque equations of shunt D.C. motors.	2	K2	<i>CO2</i>
5.	List the commonly used reference frame.	2	Kl	СО3
6.	Define arbitrary reference frame.	2	Kl	СО3
7.	Show with diagram the equivalent circuit of an induction motor.	2	K2	<i>CO</i> 4
8.	Give the Park's Equation.	2	K1	<i>CO</i> 4
9.	What is Kron's primitive machine?	2	K1	C05
10.	Define equal area criterion.	2	Kl	C05

PART - B $(5 \times 13 = 65 \text{ Marks})$ Answer ALL Questions

11. a) Illustrate the expression of force and torque of a single excited magnetic ¹³ K² CO1 system in terms of stored energy.

OR

- b) Illustrate the voltage equation for winding inductance. 13 K2 CO1
- 12. a) Explain in detail with necessary waveforms, the dynamic performance ¹³ K² CO² of permanent magnet DC motor during sudden increase or decrease in load torque.

OR

- b) Explain the time domain block diagram and state equation for shunt ¹³ K² CO² connected D.C. Machine.
- 13. a) Explain about transformation of inductive and capacitive element from ¹³ K² CO³ stationary to arbitrary reference frame.

OR

- b) Explain three phase to two phase transformation.
- 14. a) Illustrate the Voltage equations of a three phase symmetrical induction ¹³ K² CO⁴ machine in machine variables.

OR

- b) Illustrate the torque equations of a three phase symmetrical induction ¹³ K² CO⁴ machine in arbitrary reference frame variable.
- 15. a) Explain about the three phase synchronous machine and analysis of ¹³ K² CO5 steady state operation.

OR

b) Explain in detail with necessary waveforms dynamic performance of ¹³ K² CO⁵ synchronous machine for load torque variations.

PART - C (1 × 15 = 15 Marks)

- 16. a) i) outline the analysis of dynamic performance for load torque variations ¹⁰ ^{K2} ^{CO4} in induction machines
 - ii) Infer the reason for two phase quantities appear as constant quantities in 5 K2 CO5 synchronously rotating reference frame.

OR

- b) i) Outline the equations for flux linkages in the two axis model in $5 K^2 CO^4$ induction machine.
 - ii) Demonstrate the voltage equations using Park's equations for ¹⁰ K2 CO5 synchronous machine.

13 K2 CO3