Reg. No.																
----------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--

Question Paper Code 13377

M.E. / M.Tech. - DEGREE EXAMINATIONS, NOV / DEC 2024 (JAN - 2025)

First Semester

M.E. - Power Electronics and Drives 24PPEPC105 - SPECIAL MACHINES AND CONTROLLERS

Regulations - 2024

		Regulations - 2024						
Duration: 3 Hours Max. Max.								
PART - A $(10 \times 2 = 20 \text{ Marks})$ Answer ALL Questions								
1.	Cor	npare the conventional DC motor and PMBLDC motor.	2	K2 CO1				
2.	Sho	Show the magnetic equivalent circuit of 2 pole PMBLDC motor.						
3.	3. List out the merits and demerits of PMSM.							
4.	4. Outline the power controllers used for PM synchronous machines.							
5.	5. Recall the different power controllers used for the control of switched reluctance motor.							
6.	6. Give the advantages of sensor less operation of switched reluctance motor.							
7.	7. Define stepping angle.							
8.	8. What is meant by lead angle in stepper motors?							
9.	9. Tell the applications of a hysteresis motor.							
10.	10. Recall the function of hysteresis control.							
PART - B ($5 \times 13 = 65$ Marks) Answer ALL Questions								
11.	a)	Explain in detail about various types of PMBLDC motor with necessary diagrams.	13	K2 CO1				
		OR						
	b)	Discuss in detail about the magnetic circuit analysis of PMBLDC motor. Also draw its characteristics.	13	K2 CO1				
12.	a)	Illustrate about various power controllers used for PMSM with necessary diagrams.	13	K2 CO2				
		OR						
	b)	Explain the construction, working principle and operation of PMSM.	13	K2 CO2				
13.	a)	Explain with a neat circuit any two configuration of power converters used for the control of switched reluctance motor.	13	K2 CO3				

OR

- b) Discuss the necessity of power electronic circuit in SR motor and ¹³ ^{K2} ^{CO3} explain its different types of converter circuits.
- 14. a) Describe the operation of variable reluctance type stepper motor with 13 K2 CO4 different modes of operation.

OR

- b) Summarize about unipolar and bipolar driver circuits of stepping motor. 13 K2 CO4
- 15. a) Outline the constructional features and principle operation of hysteresis 13 K2 CO5 motor and AC series motor.

OR

b) Explain the operating principle of linear induction motor with neat 13 K2 CO5 diagram.

PART - C $(1 \times 15 = 15 \text{ Marks})$

16. a) Explain commutation in ac series motor and derive the torque equation 15 K2 CO1 of ac series motor.

OR

b) A stepper motor has a step angle of 2.5, Determine, i) Resolution. ¹⁵ K2 CO4 ii)Number of steps per shaft to make 25 revolutions iii) Shaft speed if starting stepping frequency is 3600pulse/sec.