| Reg. No. | | | | | | | | | | | | | | | | | |----------|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--| |----------|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--| **Question Paper Code** # B.E. / B.Tech. - DEGREE EXAMINATIONS, APRIL / MAY 2025 13529 Fourth Semester # **Computer Science and Engineering (AIML)** # 20AMPC401 - NATURE INSPIRED COMPUTING TECHNIQUES Regulations - 2020 | | Regulations - 2020 | | | | | | | | | |---|---|--------|-----------|-----|--|--|--|--|--| | Du | ration: 3 Hours Ma | x. Mai | ks: 1 | 00 | | | | | | | $PART - A (MCQ) (10 \times 1 = 10 Marks)$ | | | | | | | | | | | | Answer ALL Questions | Marks | Level | CO | | | | | | | 1. | Nature-inspired computing primarily draws its computational strategies from which | . 1 | <i>K1</i> | CO1 | | | | | | | | source? | | | | | | | | | | | (a) Human-made algorithms (b) Artificial intelligence | | | | | | | | | | | (c) Natural processes and systems (d) Mathematical equations | | | | | | | | | | 2. | Feedback in nature-inspired systems typically: | 1 | <i>K1</i> | CO1 | | | | | | | | (a) Encourages systems to ignore external stimuli | | | | | | | | | | | (b) Enables systems to correct and adjust based on past experiences | | | | | | | | | | | (c) Prevents systems from adapting | | | | | | | | | | | (d) Is non-essential to the system's functioning | | | | | | | | | | 3. | Which of the following is NOT a type of evolutionary algorithm? | 1 | <i>K1</i> | CO2 | | | | | | | | (a) Genetic Algorithms (b) Evolution Strategies | | | | | | | | | | | (c) Hill-Climbing (d) Genetic Programming | | | | | | | | | | 4. | Which of the following is a key challenge in genetic programming? | 1 | <i>K1</i> | CO2 | | | | | | | | (a) Population Size (b) Fitness Evaluation | | | | | | | | | | | (c) Genetic Drift (d) Overfitting | | 77.1 | g02 | | | | | | | 5. | Which of the following is the main inspiration behind Ant Colony Optimization (ACO)? | 1 | <i>K1</i> | CO3 | | | | | | | | (a) Fish schools (b) Bee foraging | | | | | | | | | | _ | (c) Ant foraging behavior (d) Birds flocking behavior | 7 | 1/1 | G03 | | | | | | | 6. | What is the main advantage of using Swarm Intelligence algorithms in optimization? | 1 | <i>K1</i> | CO3 | | | | | | | | (a) They are computationally expensive | | | | | | | | | | | (b) They are inspired by natural phenomena and can adapt to complex problems | | | | | | | | | | | (c) They require complex hardware | | | | | | | | | | 7 | (d) They rely on a single centralized controller. | 1 | <i>K1</i> | CO4 | | | | | | | 7. | Which of the following is a characteristic of Swarm Robotics? | 1 | K1 | CO4 | | | | | | | | (a) Single robot control (b) Centralized control. | | | | | | | | | | 0 | (c) Distributed control with cooperative behavior (d) No interaction between robots. | 1 | <i>K1</i> | CO4 | | | | | | | 8. | What happens when particles in PSO share information? (a) They move in random directions | 1 | 11.1 | 007 | | | | | | | | | | | | | | | | | | | (b) They adjust their positions to improve the overall solution(c) They stop moving altogether | | | | | | | | | | | (d) They avoid one another. | | | | | | | | | | 9. | Which of the following is a key component of the immune system? | 1 | K1 | CO5 | | | | | | | ٦. | (a) Kidneys (b) Heart | | | | | | | | | | | (c) Lymphocytes (d) Red Blood Cells | | | | | | | | | | 10 | What is the primary motivation behind DNA computing? | 1 | K1 | CO6 | | | | | | | 10. | (a) To increase the speed of traditional computers | | | | | | | | | | | (b) To reduce the cost of computer hardware | | | | | | | | | | | (c) To solve problems that are difficult for classical computers to handle | | | | | | | | | | | (d) To replace conventional computers entirely | #### PART - B $(12 \times 2 = 24 \text{ Marks})$ ## Answer ALL Questions | | Allswei ALL Questions | | | | |-----|--|---|------------|-----| | 11. | List the branches of Natural computing. | 2 | Kl | CO1 | | 12. | Differentiate parallelism and distributivity. | 2 | <i>K</i> 2 | CO1 | | 13. | How is Darwin's Dangerous Idea defined? | 2 | <i>K1</i> | CO2 | | 14. | Differentiate genetic algorithm verses traditional algorithm. | 2 | K2 | CO2 | | 15. | List the applications of ACO. | 2 | <i>K1</i> | CO3 | | 16. | Write about the formulation of Ant colony optimization (ACO). | 2 | K1 | CO3 | | 17. | Differentiate GA optimization from PSO optimization. | 2 | <i>K</i> 2 | CO4 | | 18. | Which drawbacks are associated with PSO? | 2 | K1 | CO4 | | 19. | Define immune computing. | 2 | K1 | CO5 | | 20. | Which affinity measures are most commonly used for real-valued shape spaces? | 2 | K1 | CO5 | | 21. | Which are the main advantages of DNA computing? | 2 | K1 | CO6 | | 22. | Compare classical and DNA computing. | 2 | <i>K</i> 2 | CO6 | ## **PART - C** $(6 \times 11 = 66 \text{ Marks})$ ## **Answer ALL Questions** 23. a) Given the training samples, x1=[1,0,1,0], x2=[1,0,0,0], x3=[1,1,1,1], x4=[0,1,1,0], 11 K3 COI the learning rate as 0.6 and the weights corresponding to unit 1 as [0.3 0.5 0.7 0.2] & unit 2 as [0.6 0.5 0.4 0.2] for the network given below, compute 1 epoch and find the alignment of the 4 training examples using self organizing maps. b) Optimize the weights for the given feedforward NN, so that NN correctly map 11 K3 CO1 arbitrary inputs to outputs. 24. a) Maximize (x^2+1) over $\{0, 1, ..., 31\}$ using Genetic Algorithm. Choose 1-point ¹¹ ^{K3} ^{CO2} crossover with initial population 01101, 11000, 01000, 10010. | 25. | a) | With a neat flowchart, explain the algorithm of Ant Colony Optimization | 11 | K2 | CO3 | |-----|----|--|----|----|-----| | | | OR | | | | | | b) | Outline foraging for food and clustering of objects. | 11 | K2 | СОЗ | | 26. | a) | Explain the process of PSO with a neat flow chart and algorithm. Elucidate the velocity and position update equations. | 11 | K2 | CO4 | | | | OR | | | | | | b) | With a neat flowchart, explain the algorithm of particleswarm optimization. | 11 | K2 | CO4 | | 27. | a) | Detail data compression and clustering. | 11 | K2 | CO5 | | | | OR | | | | | | b) | Describe the physiology and main components of the immune system. | 11 | K2 | CO5 | | 28. | a) | Explain the splicing system and the sticking system. | 11 | K2 | CO6 | | | | OR | | | | | | b) | Detail the DNA manipulation technique by Adleman's experiment. | 11 | K2 | CO6 |