Reg. No.																
----------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--

Question Paper Code

B.E. / B.Tech. - DEGREE EXAMINATIONS, APRIL / MAY 2025

13529

Fourth Semester

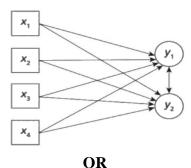
Computer Science and Engineering (AIML)

20AMPC401 - NATURE INSPIRED COMPUTING TECHNIQUES

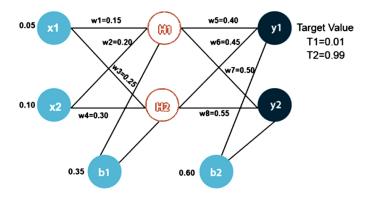
Regulations - 2020

	Regulations - 2020								
Du	ration: 3 Hours Ma	x. Mai	ks: 1	00					
$PART - A (MCQ) (10 \times 1 = 10 Marks)$									
	Answer ALL Questions	Marks	Level	CO					
1.	Nature-inspired computing primarily draws its computational strategies from which	. 1	<i>K1</i>	CO1					
	source?								
	(a) Human-made algorithms (b) Artificial intelligence								
	(c) Natural processes and systems (d) Mathematical equations								
2.	Feedback in nature-inspired systems typically:	1	<i>K1</i>	CO1					
	(a) Encourages systems to ignore external stimuli								
	(b) Enables systems to correct and adjust based on past experiences								
	(c) Prevents systems from adapting								
	(d) Is non-essential to the system's functioning								
3.	Which of the following is NOT a type of evolutionary algorithm?	1	<i>K1</i>	CO2					
	(a) Genetic Algorithms (b) Evolution Strategies								
	(c) Hill-Climbing (d) Genetic Programming								
4.	Which of the following is a key challenge in genetic programming?	1	<i>K1</i>	CO2					
	(a) Population Size (b) Fitness Evaluation								
	(c) Genetic Drift (d) Overfitting		77.1	g02					
5.	Which of the following is the main inspiration behind Ant Colony Optimization (ACO)?	1	<i>K1</i>	CO3					
	(a) Fish schools (b) Bee foraging								
_	(c) Ant foraging behavior (d) Birds flocking behavior	7	1/1	G03					
6.	What is the main advantage of using Swarm Intelligence algorithms in optimization?	1	<i>K1</i>	CO3					
	(a) They are computationally expensive								
	(b) They are inspired by natural phenomena and can adapt to complex problems								
	(c) They require complex hardware								
7	(d) They rely on a single centralized controller.	1	<i>K1</i>	CO4					
7.	Which of the following is a characteristic of Swarm Robotics?	1	K1	CO4					
	(a) Single robot control (b) Centralized control.								
0	(c) Distributed control with cooperative behavior (d) No interaction between robots.	1	<i>K1</i>	CO4					
8.	What happens when particles in PSO share information? (a) They move in random directions	1	11.1	007					
	(b) They adjust their positions to improve the overall solution(c) They stop moving altogether								
	(d) They avoid one another.								
9.	Which of the following is a key component of the immune system?	1	K1	CO5					
٦.	(a) Kidneys (b) Heart								
	(c) Lymphocytes (d) Red Blood Cells								
10	What is the primary motivation behind DNA computing?	1	K1	CO6					
10.	(a) To increase the speed of traditional computers								
	(b) To reduce the cost of computer hardware								
	(c) To solve problems that are difficult for classical computers to handle								
	(d) To replace conventional computers entirely								

PART - B $(12 \times 2 = 24 \text{ Marks})$


Answer ALL Questions

	Allswei ALL Questions			
11.	List the branches of Natural computing.	2	Kl	CO1
12.	Differentiate parallelism and distributivity.	2	<i>K</i> 2	CO1
13.	How is Darwin's Dangerous Idea defined?	2	<i>K1</i>	CO2
14.	Differentiate genetic algorithm verses traditional algorithm.	2	K2	CO2
15.	List the applications of ACO.	2	<i>K1</i>	CO3
16.	Write about the formulation of Ant colony optimization (ACO).	2	K1	CO3
17.	Differentiate GA optimization from PSO optimization.	2	<i>K</i> 2	CO4
18.	Which drawbacks are associated with PSO?	2	K1	CO4
19.	Define immune computing.	2	K1	CO5
20.	Which affinity measures are most commonly used for real-valued shape spaces?	2	K1	CO5
21.	Which are the main advantages of DNA computing?	2	K1	CO6
22.	Compare classical and DNA computing.	2	<i>K</i> 2	CO6


PART - C $(6 \times 11 = 66 \text{ Marks})$

Answer ALL Questions

23. a) Given the training samples, x1=[1,0,1,0], x2=[1,0,0,0], x3=[1,1,1,1], x4=[0,1,1,0], 11 K3 COI the learning rate as 0.6 and the weights corresponding to unit 1 as [0.3 0.5 0.7 0.2] & unit 2 as [0.6 0.5 0.4 0.2] for the network given below, compute 1 epoch and find the alignment of the 4 training examples using self organizing maps.

b) Optimize the weights for the given feedforward NN, so that NN correctly map 11 K3 CO1 arbitrary inputs to outputs.

24. a) Maximize (x^2+1) over $\{0, 1, ..., 31\}$ using Genetic Algorithm. Choose 1-point ¹¹ ^{K3} ^{CO2} crossover with initial population 01101, 11000, 01000, 10010.

25.	a)	With a neat flowchart, explain the algorithm of Ant Colony Optimization	11	K2	CO3
		OR			
	b)	Outline foraging for food and clustering of objects.	11	K2	СОЗ
26.	a)	Explain the process of PSO with a neat flow chart and algorithm. Elucidate the velocity and position update equations.	11	K2	CO4
		OR			
	b)	With a neat flowchart, explain the algorithm of particleswarm optimization.	11	K2	CO4
27.	a)	Detail data compression and clustering.	11	K2	CO5
		OR			
	b)	Describe the physiology and main components of the immune system.	11	K2	CO5
28.	a)	Explain the splicing system and the sticking system.	11	K2	CO6
		OR			
	b)	Detail the DNA manipulation technique by Adleman's experiment.	11	K2	CO6